
APPLICATION NOTE
AN001

a simple audio level meter for the
chameleon

revision 2 | 05.2002

chameleon S.D.K. v1.2

Soundart AN001 2

Copyright © 2001-2002
Soundart – Highly Original Technologies
www.soundart-hot.com

Soundart makes no warranty of any kind, expressed or implied, with respect to the contents or use
of the material in this document or in the software and hardware it describes, and specifically
disclaims any responsibility for any damages derived from its use. Hardware and Software may
contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Soundart reserves the right to revise and modify the topics covered in this
book periodically, which are subject to change without notice. This document may be reproduced
and distributed freely, provided no alterations of any kind are made. Soundart software is subject to
the terms of the Soundart Tools Software license. Third party software is subject to the terms of their
respective owners license. Third party trademarks and registered trademarks are property of their
respective owners.

A simple audio level meter for the Chameleon 3

 IntroductionIntroductionIntroductionIntroduction

We will implement a very simple but still useful application in this
tutorial: a stereo level meter.

The DSP will perform the envelope follower calculus and the ColdFire will
read its processing output to display two horizontal bars on the
Chameleon LCD display corresponding to both R and L channels audio
level values.

The level meter will monitor the device’s audio input or output
depending on the user’s choice. When monitoring the output, volume
changes will affect the level displayed, and when monitoring the input it
won’t. By pressing the “EDIT” key, the application will show the message
“Monitoring Input” or “Monitoring Output” depending on the current
state. By pressing the “VALUE UP” and “VALUE DOWN” keys, the user will
be able to switch the monitor source. Simple.

 BackgroundBackgroundBackgroundBackground

The level meter is based on an envelope follower system, whose flow
diagram is shown in FigureFigureFigureFigure 1111.

Figure Figure Figure Figure 1111

Flow diagram for the envelope follower

The difference equation of the system is:

y[n] = G·|x[n]| + TC·y[n-1]

Where:

TC is Time Constant, which can be the Attack or the Release time,
depending if the input signal tends to increase or to decrease:

 G

 z-1

 +

 TC

 x[n] y[n] |x[n]|

Soundart AN001 4

- if |x[n]| >= y[n-1]

 TC = AT (Attack time)

- if |x[n]| < y[n-1]

TC = RT (Release time)

G is the System Gain, whose value is:

 G = 1 - TC

The attack time is selected to be as small as possible. Ideally AT = 0. A
good working value is AT = 0.15

The release time is selected to be RT = 0.999

The DSP implements the difference equation. It processes each input
sample to yeld an output envelope value. The two channel 24 bit values
are truncated to 12 bit and concatenated into a single 24 bit word. The
channel L corresponds to the 12 MSB, and the R channel does it to the 12
LSB. This has not a sensitive effect on the level display and minimizes the
communications overhead (This is not a problem on this application,
since we have more than enough resources, but think on more complex
real life programs).

The Coldfire application reads the envelope value each 20ms (Thus a kind
of ratio 960 decimation is performed) and shows it on the LCD display in
a logaritmic scale. This is due to the fact that the human eye won’t be
able to see smaller period value displays, so one sample each 20ms is
more than enough. You could allways reduce the reading time to acheive
higher precision.

 Scilab simulationScilab simulationScilab simulationScilab simulation

We’ll use the amazing tool SciLab to simulate our algorithm.

Start SciLab and load the file “levelmeter.sci” into the Scilab environment
(Select File -> Getf and browse to the
\Chameleon.sdk\src\examples\levelmeter\scilab). It contains the
required functions to simulate the level meter application. You should
change the SciLab working directory to that directory (use chdir()).

The functions in that file are:

function y = envelope(x,AT,RT);

Computes the evelope from an input x vector with the specified AT and
RT time constants into the y output vector.

A simple audio level meter for the Chameleon 5

function levelmeter_test();

Type “levelmeter_test()” (without the quotes) at the SciLab prompt and
see what it happens. That function uses the envelope() routine.

It loads the provided test file “test.wav”, computes its envelope (only for
one channel) with the default application coefficients and displays both
signals (the input signal and its envelope). The waveforms displayed are
shown in FigureFigureFigureFigure 2222. The above signal is the original input and below is the
processed envelope.

Please take a look into these functions code to become more familiar
with the SciLab language and programming environment.

Figure Figure Figure Figure 2222

Scilab plots of an audio input signal (above) and the its computed envelope (below)

 DSP simulationDSP simulationDSP simulationDSP simulation

Once the algorithm is finetuned at theoretical level, it’s time start the
DSP coding.

Start the Chameleon Development Envirnonment (CDE) and open the
Level Meter project. Go to Project -> Open and browse to find the file
\Chameleon.sdk\src\examples\levelmeter\levelmeter.chp. All the
project souce code files will appear on the Project Browser window. You
can see the main C source file, the main makefile, and the “lcd.h” header

Soundart AN001 6

file which contains the symbols map to be displayed as the meter
horizontal bars on the Chameleon LCD.

The Scilab simulation results are coded into DSP assembler in the files
“levelmeter.asm”, “main_loop.asm”, and “process.asm”.

At this level, the communication strategies are also considered. The file
“levelmeter.asm” contains the main DSP application code. Here are
defined all the necessary variables and all the initialization. For the
peripherals, only the ESSI0 port (which comminicates the DSP with the
audio codec) must be initialized to enable transmission and reception.
We don’t use interrupts, so no further initialization is needed. It’s
important to note that all the hardware setup was done for you by the
system at startup, so you don’t have to care very much about it.

“process.asm” contains the level calculation and the word concatenation
routines. Finally the file “main_loop.asm” implements the DSP input
sample reading, the call to the process functions and the output writing.
Process is done sample by sample.

We added a 4th file, “main_loop_sim.asm”, which is very similar to the
main loop file, but this one is intended to repace it at simulation time. By
given the value of “0x01” to the SIMULATING label in the main code (in
file “main.asm”), this file will be compiled instead of “main_loop.asm”,
and we will be able to load the compiled file into the Motorola DSP56303
Simulator and to work with it. The only difference is that we don’t have
hardware specific code on it. The processing functions are exactly the
same, so we’ll be able to debug and profile them on the simulator.

If you are not much familiar with the Motorola DSP assembler and
development tools, we encourage you to read the splendid tutorials
provided by Motorola that you’ll find into the Chameleon SDK in the
folder \Chameleon.sdk\doc\dsp\other (files ONYXLABS.PDF and
labscode.zip) before continue reading.

To compile the project, press F7 on the CDE. You’ll see the compiler
messages on the output window at the bottom of the main window.
Make sure that the SIMULATING flag is set to 1.

Once our project is compiled with the SIMULATING flag set to 1, we will
load the DSP code into the simulator (Start Menu -> Chameleon SDK ->
DSP56303 Simulator or in the CDE select Tools -> DSP56303 Simulator).

PLPLPLPLEASE NOTEEASE NOTEEASE NOTEEASE NOTE: Before to open the simulator, make sure that your PC local
configuration is set as the decimal separator is a point (‘.’) instead a
comma (‘,’). Otherwhise, the simulator won’t be able to read the text
simulation stimulus files properly.

On the simulator window, select File -> Load -> Memory COFF, and then
press on the File button. Browse to find the file compiled
“levelmeter.cld” to load into the simulator, which is located in the
Chameleon.SDK\out\model01\debug\examples\levelmeter folder.
Open that file and finally press OK. You’ll see the Level Meter DSP code
loaded on the Assembly Wintow of the simulator.

A simple audio level meter for the Chameleon 7

Before to start the simulation, we’ll load a text file as an input to
simulate the DSP audio input data stream.

In SciLab, load the file “ioutils.sci” that you’ll find in the “scilab” folder in
this tutorial (use Getf() as before). It contains useful functions to read
and write simulator files, and to translate wav files into text files and
vice versa. Now type “wav2sim(‘test’)”. This function will convert the
provided file “test.wav” into “test.io”, which can be loaded into the
simulator.

Back at the simulator’s window, now select File -> Input -> Open . Here
we connect our binary file to the DSP ESSI0 input (address x:$FFFFB8).
The input number is 1, the input is from a file, the file is connected to
memory (memory space x, address $FFFFB8), the radix is fractional, and
the filename is “test.io”.

Finally we connect our output to another file that we’ll be able to
analyze later. Connect address y:$FFFFEF to the output file outpu.io (File->
Output -> Open). The output number is 1, the input is from memory to
file, the radix is fractional, and the file is “output.io” (Place it on the
same directory where the file “input.io” is. If the tools report that the file
already exists, instruct it to overwrite).

NOTE: You can save these actions as macros for the simulator to avoid to
repeat them any time you want to load and simulate your code with
stimulus files. To learn how to use macros, please refer to the DSP
Simulator Help.

Now we are able to simulate our code. Scroll to code address $124 and
place a breakpoint. Now run the simulator and wait a while. The
simulator will execute the DSP code and will stop after processing 4095
input samples and generating 4096 output samples, which be stored on
our output file. Once the simulator stops, close the output #1 (File ->
Output -> Close).

Back to SciLab again, we can analyze the results of our simulation. Type
“y = loadsimst(‘out’)” and plot one channel (“plot(y(:,1))”). It works!

FigureFigureFigureFigure 3333 shows the original file (above) and the file obtained from the
simulator (below). Only the simulated size (4095 samples) is displayed,
but is easy to see that the result is equal to the previously computed
with the Scilab function (FigureFigureFigureFigure 2222) in these first 4095 samples.

You can now close Scilab and the DSP simulator. We have finished the
simulation stage.

Soundart AN001 8

Figure Figure Figure Figure 3333

Scilab plots of the audio input file (above) and the result of the simulation of the DSP envelope
follower code (below).

 Chameleon implementationChameleon implementationChameleon implementationChameleon implementation

Once tested, our assembler code is ready to be implemented into a
complete Chameleon application, by adding the necessary ColdFire
control code.

The DSP code consists of an endless main loop. The loop executes each
two input audio samples (one for channel L and other for channel R). At
the beginning of the loop, the last envelope values computed for each
channel are sent to the ColdFire. Then the loop checks if a new volume
has been received from the ColdFire in the Host port, and updates the
volume variable if necessary. After that, for each channel the loop waits
for the input sample and once it arrives the sample is multiplied by the
volume, and its envelope is computed. This envelope corresponds to the
input signal (before aplying the volume) or to the output (after volume)
depending of the status selected by the user. The ColdFire uses the Host
Port Flag 0 to signal the DSP whether it has to get the envelope of the
input or the output.

The computed envelope values are “packed” into a single word ready to
be sent to the ColdFire. Finally, a volume smoothing technique has been
implemented. Instead of applying directly the volume changes received
from the ColdFire, the current volume is progressively updated towards
the target value. This way, sudden (and not so sudden) volume changes
don’t cause audible “clicks” in the output signal when moving the
volume potentiometer.

A simple audio level meter for the Chameleon 9

For the ColdFire control part of the application we will use two RTEMS
tasks. The first one (panel_task) will take care of the front panel, and will
constantly look for user input in some control (keys, pots or encoder).
Once it detects some user input, it will perform the necessary actions, in
this case it will respond to the movement over the Volume
potentiometer and the “EDIT” key.

The second task (level_meter_task) will read the level values from the
DSP host port and will display them on the LCD, performing some
processing previously. To display the data in the LCD with the shape of a
typical meter bars, we will redefine the 8 user definable characters, and
map them into an array. The level values are the indexes into this array,
and the array elements are the graphical bars corresponding to each
level value. This way we will represent the numerical values graphically.

Before to create and run these two tasks, the DSP is initialized by
downloading our code into it (calling the function dsp_init()). The
compiler did translate the CLD compiled file into a C header file
(“dsp_code.h”) so we can access that code to download it.

Take a look at the files “main.c” and “lcd.h” on the CDE project. The code
looks quite straight forward and easy to read.

Now the SIMULATING flag to zero in the DSP main source file. Set the CDE
configuration to Debug Mode (Build -> Set Active Configuration ->
Chameleon Debug) and compile the project again. Now we can perform
the most emotionant action: download your app into the Chameleon.
Turn on the Chameleon and be sure that the RS-232 cable is connected to
your computer. Start the Chameleon Toolkit (Start Menu-> Programs ->
Chameleon SDK, or in the CDE select Tools -> Chameleon Toolkit), and
press the “DEBUG” button and browse to the out folder where our
compiled program is (\Chameleon.sdk\out\model01\examples\
levelmeter\). Look for “levelmeter.elf” and click “open”. Select the
appropiate COM port and click “OK”. The code will start to download.
Once it finishes, you’ll see the message “Audio Level Meter Example” on
the Toolkit terminal window. The code is now running. Connect an audio
signal to the Chameleon audio input and see how the application works.
You should see the level meter bars in action!

To debug your app, you can use the TRACE() statement to display
messages on the Toolkit window. Once your app is finished, compile it in
Release mode and that’s it. TRACE() directives won’t execute on your
code then.

Finally, you may want to store permanently this app on the Chameleon.
On the Toolkit, pres the FLASH button. A dialog similar to the debug one
will appear. Browse for file “levelmeter.cld” and press OK. The app will
start to download. Once it finishes, the Toolkit will prompt you to actually
store the application in FLASH. Confirm, and the levelmeter will be stored
on the Chameleon.

Soundart AN001 10

 ConclusionsConclusionsConclusionsConclusions

This is a very simple application. Many improvements can be done to
increase performance and functionality. This was just a sample
application to illustrate the main aspects of the Chameleon applications
development process, and to show you how easy this can be. The
Chameleon development tools were introduced, the basic aspects of the
communication between the Coldfire and the DSP (but not all of them!)
were shown, as well as the most basic front panel controls handling into
a Chameleon application, and some operating system features, such as
tasks and rate monotonic services.

You could easily integrate that level meter application into your own
more complex programs, as it consumes almost neglectable DSP power,
and so adding them such interesting (and often fundamental) feature.

Keep on coding!

