
APPLICATION NOTE
AN002

monosynth: a monophonic synthesizer for
chameleon

revision 0 | 05.2002

chameleon S.D.K. v1.2

2 Soundart AN002

Copyright © 2001-2002
Soundart – Highly Original Technologies
www.soundart-hot.com

Soundart makes no warranty of any kind, expressed or implied, with respect to the contents or use
of the material in this document or in the software and hardware it describes, and specifically
disclaims any responsibility for any damages derived from its use. Hardware and Software may
contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Soundart reserves the right to revise and modify the topics covered in this
book periodically, which are subject to change without notice. This document may be reproduced
and distributed freely, provided no alterations of any kind are made. Soundart software is subject to
the terms of the Soundart Tools Software license. Third party software is subject to the terms of their
respective owners license. Third party trademarks and registered trademarks are property of their
respective owners.

monosynth: a monophonic synthesizer for Chameleon 3

IntroductionIntroductionIntroductionIntroduction

MonoSynth is a complete monophonic synthesizer application for Soundart’s
Chameleon with two wavetable oscillators, a white noise generator, a
mixer, a resonant lowpass filter with cutoff envelope (ADSR), an amplifier
with gain envelope (ADSR) and two (stereo) delay effect units.

The source code of the application is included as an example in the
Chameleon Software Development Kit (SDK) from version 1.2

This example covers practically all aspects necessary to implement a typical
synthesizer. These are some of the key characteristics:

- Use of a modular-like DSP processing framework.

- Included DSP code implementing generic blocks of frequently used
modules: oscillators, filter, vca, envelopes, delay lines…

- Fast ColdFire to DSP, interrupt based, generic communication
framework.

- DSP simulator/profiling support code (using conditional assembly
directives).

- Realtime computation of DSP parameters in the ColdFire using
standard floating point functions in C.

- Realtime processing of incoming MIDI data, supporting NoteOn,
NoteOff, PitchBend, Controllers, ProgramChange and SysEx
messages.

- Realtime generation of MIDI controller data using the panel knobs.

- Programmable MIDI-thru-merge engine (MIDI input messages
routed to MIDI output in realtime together with the internal
generated ones).

- MIDIFile sequencer used to play the included demo song.

- Easily extendable menu based panel operation framework.

- Possibility of assigment of the panel knobs to any defined
parameter.

- Use of user flash memory to store until 128 sound presets and non
volatil configuration data (MIDI device ID, receive MIDI channel, …)

4 Soundart AN002

- Implementation of typical preset dump and request MIDI system
exclusive messages.

- Use of object oriented C++ classes in the ColdFire side to make easy
the addition of new features, and to promote the reuse of
commonly used code.

- Multitasking, object oriented, message-queue and priority based
implementation of the different conceptual elements involved.

- Fast access to catalogued parameters by ID using a database-like
parameter container (using a fast hash table).

- Easy to change mapping tables to assign MIDI controllers to internal
parameters.

ColdFire SideColdFire SideColdFire SideColdFire Side
The ColdFire part of the example is composed by a number of C++ files
which define the objects used in the application. The code uses class
inheritance to define commonly used routines in base classes.

The application is divided conceptually in three different blocks: the panel panel panel panel
handler handler handler handler (CMonoSynthPanel), the MIDI handler MIDI handler MIDI handler MIDI handler (CMonoSynthEngine) and the
DSP handler DSP handler DSP handler DSP handler (CDsp). Each one of these handlers are really realtime priorized
RTEMS tasks with RTEMS message queues to allow easily safe inter-task
communications. The base class of these blocks (CMessageHandler)
encapsulates this functionality offering generic functions members like
SendMessage or the virtual OnMessage to allow derived classes to
implement easily new message types (derived from class CMessage).

Giving a general outline, the class CMonoSynthRenderer contains all
available application parameters as private data members. During the
initialization, these members are made globally accessible by assigning a
unique identifier (ID) to each one, and using a static CHashTable object. The
class CMonoSynthPanel allows the user to change the parameter values and
when this happens, it notifies to the CMonoSynthEngine class to update the
parameter value in the DSP (using CMonoSynthRenderer).
CMonoSynthEngine can also change parameter values by loading presets
from flash memory, or by receiving MIDI data. The object
CMonoSynthRenderer is contained inside the CMonoSynthEngine; it has a
private CDsp object inside to allow direct communication with the DSP. Thus,
the CMonSynthEngine is the only class which has access to the DSP.

monosynth: a monophonic synthesizer for Chameleon 5

Figure Figure Figure Figure 1111
Main ColdFire C++ classes interaction

CMonoSynthEngineCMonoSynthPanel

CMonoSynthRenderer

CDsp

Panel Events MIDI Events

Panel HandlerPanel HandlerPanel HandlerPanel Handler

The panel handler panel handler panel handler panel handler is used to manage the user interaction with Chameleon
panel elements. CMonoSynthPanel is derived from CPanel, which in turn is
derived from CMessageHandler. Therefore CMonoSynthPanel is implemented
as a RTEMS task runnning in parallel with the other tasks. CPanel contains a
reference to the panel driver, receives input events from the local message
queue using the standard way proposed (OnMessage), and includes function
members to modify output panel elements (LCD and LEDs).

The panel handler panel handler panel handler panel handler sends and receives messages to and from the MIDI MIDI MIDI MIDI
handlerhandlerhandlerhandler to inform and to be informed mutually of the changes made, using
defined messages like ParameterChanged or PresetChanged.

To implement different application operating modes and menu structures, it
has been defined the base class CPanelModeHandler. Several derived
objects from this class are used by the panel handlerpanel handlerpanel handlerpanel handler (only one of them at a
time) to easily change the operation mode of the application without keep a
lot of global variables. This class defines a number of common virtual
function members to allow derived classes to change the default behaviour

6 Soundart AN002

used to implement the different operating modes. The MonoSynth
application uses these different operating modes/states:

- Init mode Init mode Init mode Init mode (CMonoSynthPanelModeInit): this mode is the first used
when the application boots. It shows a welcome message and waits
a bit during the initialization of the rest of components. After
initialization is completed, the application change to the preset
mode.

mono synth
v1.0

- Preset mode Preset mode Preset mode Preset mode (CMonoSynthPanelModePreset): this is the typical
operating mode used to navigate across the 128 presets stored in
non volatile memory. The display shows the current preset number
and name, and a flashing asterisk if any of the preset parameters
has been modified to notice that. The LEDs located above the panel
knobs will be turned on if the preset has assigned that knob to any
parameter. If the user turn left or right one the assigned knobs, the
application changes to the assign mode.

Preset 001 *
Fat Bassey

The user can change the current preset using the panel encoder or
the value up and down keys. The edit key puts the panel in the edit
mode, and the group up or group down keys changes to the midi
dump mode.

Pressing together the shift and part down keys, the Preset mode
changes to the demo playing state which loads the midifile
DEMO.MID supplied with the source code and included in the
application using the new bin2header utility. Once the midifile is
loaded using the MidiShare Player library function
MidiFileLoadFromMemory, it is played in loop mode (using the
SetLoopPlayer and StartPlayer functions) until the user press the
shift key again, exiting then from the demo playing state.

- Edit mode Edit mode Edit mode Edit mode (CMonoSynthPanelModeEdit): This mode defines a menu
structure to allow the navigation and modification of all available
preset parameters using the keys and the encoder. The display is
divided in four areas: The upper left area shows the current
parameter group name; the upper right area shows the current
parameter page name (inside the current group); the lower left area
shows the current parameter name (inside the current page in the
current group); and the lower right area shows the current
parameter value.

OSCILLATOR: Osc1
Waveform [Saw]

monosynth: a monophonic synthesizer for Chameleon 7

The user can move the encoder or press the value up and down
keys to change the current parameter value. The param up and
down keys change the current parameter inside the current page
selected. The page up and down keys are used to change the
current parameter page inside the current parameter group
selected. And finally, the group up and down keys are used to
change the current parameter group.

The menu structure is defined during the initialization of
CMonoSynthPanelModeEdit using CMenuItem objects. Using this
base class for menu items, each group item keeps the current page
selected, and each page item keeps the current parameter item
selected.

The MonoSynth application defines the following menu structure:

GROUP PAGE PARAM
OSCILLATOR Osc1 Waveform
 Transpose
 Osc2 Waveform
 Transpose
 Detune
MIXER Osc1Vol
 Osc2Vol
 NoiseVol
 InputVol
FILTER Cutoff
 Resonance
 EnvDepth
 KeyDepth
ENV Filter Attack
 Decay
 Sustain
 Release
 Amp Attack
 Decay
 Sustain
 Release
AMP EnvDepth
 KeyDepth
EFX Delay Left DelayLev
 DelayTime
 DelayFb
 Delay Right DelayLev
 DelayLev
 DelayFb

8 Soundart AN002

GLOBAL InputThru
 MidiChannel
 MidiThru
 Midi ID

When the application is in edit mode, the user can assign the
current parameter to any of the three Chameleon panel
potentiometers (pot), by holding pressed the shift key when turning
left or right the selected pot. When this is done, the LED located
above the used pot will be turned on indicating that this has an
assigned parameter. If the user turn left or right one the assigned
knobs, the application changes to the assign mode.

When the edit mode begins, the edit LED is turned on. If any of the
parameters of the current preset has been modified, then this LED
will flash to notice this fact.

To exit the edit mode, the user has to press the edit key. If the
current preset has been modified, the application change to the
save mode. If not, then the application is put in the preset mode
again.

- Save mode Save mode Save mode Save mode (CMonoSynthPanelModeSave): This mode is used to ask
the user for information to save the current modified preset. First,
the display shows a message asking the user to confirm the
operation. The user can press the edit key to accept the current
displayed answer, press the value up and down keys to change the
answer to Y or N respectively, or press the shift key to cancel the
operation and return to the preset mode. While waiting for an
answer, the shift and edit LEDs will flash alternatively to inform the
different possibilities.

Preset modified
Store it? [Y]

If the user’s answer to the previous question was Y, then the
application asks the user for the target preset number to be
overwritten, showing the current one. The user can use the encoder
or the value up and down keys to change this value. As in the
previous step, the edit key is used to accept the current setting, and
the shift key to cancel the process returning to the preset mode.

Preset number?
[001]

If the user pressed the edit key in the previous step, then the
applications asks the user for a new preset name, showing the
current one. The user can use the encoder or the value up and down
keys to change the current flashing letter (cursor). The param up
and down keys can be used to advance or to move back the cursor.
As in the previous step, the edit key is used to accept the current

monosynth: a monophonic synthesizer for Chameleon 9

setting, and the shift key to cancel the process returning to the
preset mode. Pressing the edit key will go also to the preset mode
but storing the changes made in non volatile memory.

Preset name?
[Fat Bassey]

- Assign mode Assign mode Assign mode Assign mode (CMonoSynthPanelModeAssign): This mode is used to
inform the user that an assigned knob has been moved and to
display the parameter name and value changed. This information is
displayed during approximately 1.5 seconds and then the
application change to the previous mode again.

Filter Cutoff
[84]

- Midi mode Midi mode Midi mode Midi mode (CMonoSynthPanelModeMidi): This mode displays the
MIDI Dump menu to allow the user to send a bank or preset MIDI
system exclusive dump to the Chameleon’s MIDI out connector.

MIDI Dump:
[Current Preset]

The user can press the value up and down keys to change the
current option (Full Bank or Current Preset), the edit key send the
MIDI dump, or the shift, group up or group down keys to cancel the
process and to return to the preset mode. In this mode, the edit and
shift LEDs will flash alternatively to notice the available options.

DSP HandlerDSP HandlerDSP HandlerDSP Handler

The DSP handler DSP handler DSP handler DSP handler class (CDsp) is derived also from the CMessageHandler and
therefore it is implemented as a RTEMS task runnning in parallel with the
other tasks. It contains internally a reference to the DSP driver and together
with the assembler host code implements a set of enqueued commands
(accesible as messages) which allow to:

- Write a block of adjacent words in P, X or Y memory.

- Write a single word in any P, X or Y memory location.

- Internally copy P memory blocks of code.

- Fill blocks of either X or Y memory data with a specified value.

The class CDsp is used by CMonoSynthRenderer directly to update the
parameter changes when the CMonoSynthEngine class decides. The
CMonoSynthRenderer is an alone class which contains privately all
parameters involved in the synthesizer (all derived from CParameter) and a
set of functions called by CMonoSynthEngine to update the parameter

10 Soundart AN002

values in the DSP (Update), implement voice allocation (DoMidiKeyOn,
DoMidiKeyOff), and other MIDI related work (DoMidiPitchWheel).

Internally, the CMonoSynthRenderer class knows how the DSP assembler
code is made and it uses the constants created when assembling the DSP
code (DSPP_, DSPX_, DSPY_, DSPL_, DSPK_) to modify the DSP memory
making calls to the private CDsp class. To speed up the computation of the
DSP coefficients associated to parameters, several pre-filled internal tables
are used (note frequencies, logarithms…)

For example, when the Master Volume parameter must to be updated, the
CMonoSynthEngine calls to CMonoSynthRenderer::Update, passing the
constant kGlobalMasterVolume as argument. This function calls to
CDsp::SendMsgWriteWordX using the constant DSPX_MasterVolume (which is
generated when assembling the DSP code, because there is a label in X
memory called MasterVolume) and the value returned by
GetAttenuation_dB with the current Master Volume parameter value as
arguments. When the DSP handlerDSP handlerDSP handlerDSP handler receives the message generated when
SendMsgWriteWordX was called, it directs the DSP using the DSP driver to
write the specified word in the specified DSP memory address.

MIDI HandlerMIDI HandlerMIDI HandlerMIDI Handler

The MIDI handler class (CMonoSynthEngine) is derived from the class
CEngine, which is in turn derived from CMessageHandler and therefore it is
implemented as a RTEMS task runnning in parallel with the other tasks.
CEngine contains a private reference to a MidiShare task used to
send/receive MIDI data to/from the external MIDI ports. The MIDI data is
received from the local message queue using the standard method
proposed in the CMessageHandler class (OnMessage). The class supports the
channelized MIDI messages Note On, Note Off, Pitch Bend, Controller Change
and Program Change, and also the following system exclusive messages:
stored preset dump (override flash preset), edited preset dump (override
only edit buffer), stored preset request, edited preset request and stored
bank request.

CMonoSynthEngine uses several tables to map the available parameters to
the configuration data format (m_tableGlobalParameters), the preset data
format (m_tablePresetParameters) the received MIDI controllers
(m_tableMidiCtrlParameters) and the sent MIDI controllers when panel
knobs are moved (m_tablePot2MidiCtrl).

The parameter changes are directed to the private CMonoSynthRenderer
object, as described in the previous section.

The CMonoSynthEngine class contains also a reference to another MidiShare
task: the player. This is used to show how to play a standard MIDI file using
the sequencer supplied in the Player library. The MIDI file is included in the
project using the utility called BIN2HEADER supplied with the Chameleon
SDK.

This class has also a reference to the flash driver used to load and save the
preset and configuration data in non volatile memory.

monosynth: a monophonic synthesizer for Chameleon 11

DSDSDSDSP SideP SideP SideP Side
The DSP part of the application is composed by a main assembler file
(main.asm) which includes the rest of the files involved. This file contains
mainly the initialization code and the main loop, inside which is included
the file prg.asm containing the real synthesizer processing code using re-
usable modules.

The communication with the ColdFire is made by using host interrupts: each
time the ColdFire writes data to the DSP, the HostRxDataFull interrupt is
asserted and the ISR saves the data consecutively into an internal
HostBuffer. When the ColdFire writes a host command 0x32
(HostCommandUpdate), the DSP disables reception of data in the host port.
Each time the main loop is executed, the ProcessHostData tests if the data
reception is disabled, and if so, then it decodes the data sent by the ColdFire
(which is located in the HostBuffer) and updates DSP memory locations. This
data is coded using a custom protocol designed to implement the messages
described in the CDsp class of the ColdFire.

Figure Figure Figure Figure 2222
Flow diagram of the DSP assembler code

HostRxDataFull
interrupt

HostCommandUpdate
interrupt

Global Ini tialization

ProcessHostData

Fill DMA DAC buffers
with OUT_L_CHUNK
and OUT_R_CHUNK

contents

Fill IN_L_CHUNK
and IN_R_CHUNK

with DMA ADC buffers

DoProcessing

Wait and
ChangeActiveBufferDMA

12 Soundart AN002

The initialization code configures the DSP to use the DMA block mode for
making audio transfers using a double buffer method, in wich while the core
uses a buffer to transfer audio using the DMA, the program is using the
other buffer for processing; then, when the program finish the actual buffer
processing, it waits for DMA completion and then swaps the buffer usage.

The processing method used is therefore block based, using blocks of
CHUNK_SIZE samples. The processing code uses a predefined structure to
allow a modular-like programming framework, which follow the next
guidelines:

- Each processing module receives arguments in consecutive memory
addresses pointed by R_X and R_Y (defined as R0 and R4
respectively int file main.asm).

- The inputs and outputs are called CHUNKS. Each CHUNK contains
CHUNK_SIZE samples. The module must to process exactly
CHUNK_SIZE samples from each input and generates CHUNK_SIZE
samples into each output.

- Each module can use any number of CHUNKS as input or output. The
same CHUNKS can be used as input or output by the same or
different modules.

- Each module can use other fixed memory zones to store tables of
any size (wavetables, delay lines…)

For example, this block of code implements a typical two inputs mixer using
the proposed framework:

;***
; Defining the input and output chunks
;***

org X:

In1: CHUNK

org Y:

In2: CHUNK
Out: CHUNK

;***
; Defining module arguments
;***

org X:

ModulesDataX:
XMEM Mixer_In1Addr,In1
YMEM Mizer_OutAddr,Out

org Y:

ModulesDataY:
YMEM Mixer_In2Addr,In2

monosynth: a monophonic synthesizer for Chameleon 13

;***
; Module code contents: when calling this piece of code
; the R_X must point to ModulesDataX and R_Y to ModulesDataY
;***

org P:

MOVE X:(R_X)+,R1 ; (X) = In1Addr (X)
MOVE Y:(R_Y)+,R5 ; (Y) = In2Addr (Y)
MOVE X:(R_X)+,R6 ; (X+1) = OutAddr (Y)

BEGIN_LOOP
;---

MOVE X:(R1)+,X0 Y:(R5)+,A
ADD X0,A
NOP
MOVE A,Y:(R6)+

;---
END_LOOP

The symbols CHUNK, XMEM, YMEM, BEGIN_LOOP and END_LOOP are defined
in main.asm to understand easily the code. In this example, we use three
different chunks of samples: two inputs and an output. One of the input
chunks is located in X memory; the other input is in Y memory; and the
output chunk is in Y memory.

The module arguments are stored in consecutive memory beginning from
R_X and R_Y:

(R_X + 0) = In1Addr
(R_X + 1) = OutAddr

(R_Y + 0) = In2Addr

The first argument in the XMEM and YMEM macros (both defined in the file
main.asm simply as a define constant directive, but used to distinguish X
and Y memory arguments) is a label used to reference the argument from
the ColdFire using the constants DSPX_ and DSPY_

The code first load the arguments (here pointers) in registers and execute
CHUNK_SIZE times the loop, inside which the code will load the contents of
the input chunks sample by sample, will add both, and will save the result
in the output chunk.

In the MonoSynth application the following modules have been created
(which are not optimized for speed nor quality and they are only provided
as examples):

- oscoscoscosc : It implements an interpolating wavetable oscillator with fixed
amplitude and frequency. The example is supplied with four
different wavetables: a sine wave, a triangle wave, a sawtooth
wave and a square wave. It has been also included a Microsoft Excel
document (doc/wavetables.xls) to show how to make additional
wavetables. NOTENOTENOTENOTE: the oscillator is not bandlimited; thus, the output
signal can be aliased if the wavetable contains abrupt changes (as
for example the sawtooth and the square wave provided).

14 Soundart AN002

- noisenoisenoisenoise : This module generates pseudo-white noise using the linear
congruential method.

- mixermixermixermixer : The mixer adds four inputs and fills an output, scaling two of
them before by using the provided scale constants in the
arguments.

- envenvenvenv : This module computes piecewise-exponential envelope
segments specified by duration/target/rate tables in memory.

- scalescalescalescale : This module simply scales the input CHUNK using the provided
constant.

- addkaddkaddkaddk : This is other simple module which adds a constant value to
the input CHUNK.

- filterfilterfilterfilter : The filter module implements a typical 24dB lowpass resonant
VCF (voltage controlled filter), with a control input CHUNK used to
modulate the filter cutoff. NOTENOTENOTENOTE: the filter is not well adjusted, and
when the cutoff input is close to zero, the filter tend to be unstable,
generating clicks at output.

- ampampampamp : This module implements a typical VCA (voltage controled
amplifier), with a control input CHUNK used to modulate the
amplifier gain.

- delaydelaydelaydelay : This modules implements an interpollating fractional delay
line with feedback, used in the example to simulate an echo effect.

- outoutoutout : The out module is used to accumulate the input CHUNKs to the
output buffers which will be send to the D/A converter next time.

Figure Figure Figure Figure 3333
monosynth modular structure

Osc1

Osc2

Noise

Input

Mixer Filter Amp Out

Delay1

Delay2Addk

Scale1

Env1

Scale2

Env2

Using these modules, the file prg.asm defines a typical analog synthesizer
structure with two oscillators, a noise generator and an input source mixed
and sent to the input of a lowpass filter, which cutoff is modulated using an
envelope generator, and whose output is sent to an amplifier with gain

monosynth: a monophonic synthesizer for Chameleon 15

modulated by another envelope generator. The output of the amplifier is
processed by two delay modules to simulate a stereo echo effect and the
outputs of the delays are sent to the output module and therefore to the
outside world.

The ColdFire (CMonoSynthRenderer) uses the labels defined in the
arguments declarations of the modules to make changes according to the
MIDI input and parameter changes made to re-create the meaning of typical
synthesizer parameters.

