
TECHNICAL DOCUMENT
STD002

chameleon api programmer’s reference

revision 2 | 07.2002
chameleon S.D.K. v1.2

 ii

Copyright © 2001-2002
Soundart – Highly Original Technologies
www.soundart-hot.com

Soundart makes no warranty of any kind, expressed or implied, with respect to the contents or use
of the material in this document or in the software and hardware it describes, and specifically
disclaims any responsibility for any damages derived from its use. Hardware and Software may
contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Soundart reserves the right to revise and modify the topics covered in this
book periodically, which are subject to change without notice. This document may be reproduced
and distributed freely, provided no alterations of any kind are made. Soundart software is subject to
the terms of the Soundart Tools Software license. Third party software is subject to the terms of their
respective owners license. Third party trademarks and registered trademarks are property of their
respective owners.

Chameleon API Programmer’s Reference iii

Table of ContentsTable of Contents

00 IntroIntroductionduction 44
0.1 Conventions..4

11 Macros and Specific FunctionsMacros and Specific Functions 66
1.1 Macros for Debugging...6
1.2 Floating and Fixed Point Conversion Utilities7

22 Panel APIPanel API 99
2.1 Constants in panel.h ...15
2.2 Constants in panel01.h..16

33 FLASH APIFLASH API. 1717

44 DSP APIDSP API. 2121

55 Information APIInformation API 2727

Introduction 4

00 IntroductionIntroduction

This document is a complete reference for the hardware specific
functions found in the libraries of the Chameleon Software Development
Kit (SDK), grouped by specific drivers, which compose the Chameleon
Application Programming Interface (API). This reference is intended to
be used together with the Chameleon Applications Developer’s Guide
and the rest of the documentation provided with the Chamelon SDK.

The following libraries are explained in detail:

§ Chameleon Macros and utility functions.

§ Panel Driver API.

§ FLASH Driver API.

§ DSP Driver API.

§ Information Driver API.

The current version of this document covers the Chameleon model #01.

For the latest version of this document, as well as all other SDK
components, visit www.soundart-hot.com.

0.10.1 ConventionsConventions

This is a technical document. In order to read it easily, you should be
familiar with the typographical conventions employed. Furthermore,
most of the material in this reference pertains to the C programming
language, and you should ensure that you are familiar with this before
attempting to implement the commands explained within.

§ The Courier font is used for all programming code, except for
isolated words.

§ FunctionsFunctions are usually named using lowercase letters divided by the
underscore character, such as: a_function_name

§ ConstantsConstants are usually named with uppercase letters divided by the
underscore character, as in: PANEL01_SYSTEM_CONSTANT

0
Chapter

Chameleon API Programmer’s Reference 5

§ Numbers Numbers are subject to the following considerations:

§ Integer and floating point numbers are written in the normal ways.
Examples are 1, 7, 3.142, and so on.

§ Hexadecimal numbers are written in the form 0x000000, as in C
code. Examples are 0x7F, 0x312A4B, 0xFFFFFF and so on.

§ Binary numbers are written in the form %00000000 as in C code.
Examples are %01, %01001010 and so on.

Functions are presented in a similar way to the following:

some_function_name

DeclarationDeclaration

C prototype of the function:

int some_function_name(int some_param …);

Return valueReturn value

A description of the value returned by the function.

ParametersParameters

§ some_parametersome_parameter : Definition of what the parameter means.

DescriptionDescription

An extended definition of what the function does, how it does it, and
any other notes that may be relevant to the programmer.

Macros and Specific Functions 6

11 Macros and Specific FunctionsMacros and Specific Functions

Following is the listing of the macros and specific functions provided in
the header file:

\Chameleon.sdk\include\chameleon\chameleon.h

These utilities are available to the programmer to perform debugging
and fixed point conversion tasks. In addition to these utilities, this
header file also includes the remaining header files for each Chameleon
library, so including chameleon.h is equivalent to include also the rest of
the libraries.

1.11.1 Macros for DebuggingMacros for Debugging

These macros are useful to display messages in the Toolkit terminal
window. When an application is compiled in debug mode, the functions
behave as described below. When compiling an application for release
mode, the preprocessor does not assign any action to these macros and
so they will not be executed during program execution.

TRACE()

DescriptionDescription

This macro is equivalent to the standard printf function, but it only will
print in debug mode. The argument formatted string is sent to the
Chameleon serial port and printed in the Toolkit terminal.

ASSERT()

DescriptionDescription

This macro evaluates its argument. If the result is 0, the macro prints a
diagnostic message and aborts the program. If the condition is nonzero,
it does nothing.

1
Chapter

Chameleon API Programmer’s Reference 7

1.21.2 Floating and Fixed PFloating and Fixed Point Conversion Utilitiesoint Conversion Utilities

Since the DSP operates with 24 bit words in fixed point format to
represent fractional data1, and the ColdFire uses 32 bit words floating
point data for fractional calculations, some kind of translation is needed
for the two processors to communicate. The following conversion
routines between both formats are provided to simplify the
programmer’s implementation of the communication routines between
both processors.

fix_to_float

DeclarationDeclaration

static __inline float fix_to_float(rtems_unsigned32 n)

DescriptionDescription

This function converts the 24 bit fixed point parameter n (sign extended
to 32 bits) into a 32 bit IEEE format floating point value.

float_to_fix

DeclarationDeclaration

static __inline rtems_unsigned32 float_to_fix(float f)

DescriptionDescription

This function converts the 32 bit IEEE format floating point parameter f
into a 24 bit fixed point value (sign extended to 32 bits). The result is
truncated (no rounding is performed).

1 For a detailed reference on the fixed point fractional data used by the DSP, please refer to the
Motorola Application Report APR/3, Fractional And Integer Arithmetic using the DSP56000 family.

Macros and Specific Functions 8

float_to_fix_round

DeclarationDeclaration

static __inline rtems_unsigned32 float_to_fix_round(float f)

DescriptionDescription

This function converts the 32 bit IEEE format floating point parameter f
into a 24 bit fixed point value (sign extended to 32 bits). The result is
rounded.

Chameleon API Programmer’s Reference 9

22 Panel APIPanel API

The front panel controls of the Chameleon are accessed uing the Panel
library. All interactive controls (except the power switch) can be
managed from the application employing the function calls below.

The header file for these functions is stored in:

\Chameleon.sdk\include\chameleon\panel.h

panel_init

DeDeclarationclaration

int panel_init(void);

Return valueReturn value

Returns a non zero value with the opened panel handle. If the function
fails, it returns zero.

ParametersParameters

None.

DescriptionDescription

This function initializes the panel driver and returns a handle to it, which
is used in all the subsecuent Panel functions calls. Before to open the
Panel by calling panel_init, no other panel function may be called.

panel_exit

DeclarationDeclaration

rtems_boolean panel_exit(int ref);

2
Chapter

Panel API 10

Return valueReturn value

Returns TRUE if the Panel driver was closed succesfully, and FALSE if the
function fails or the driver was already closed.

ParametersParameters

§ refref : Handle of the panel to close.

DescriptionDescription

This function releases the handle to the panel obtained with panel_init.
Once this handle is released, any attempt to use any panel function
again without re-initialising it will cause that function to return an error.

panel_out_lcd_clear

DeclarationDeclaration

rtems_boolean panel_out_lcd_clear (int ref);

Return valueReturn value

Returns TRUE if the function suceeds, otherwise returns FALSE.

ParameterParameter ss

§ ref ref : Handle of the panel to close.

DescriptionDescription

It clears the LCD screen of the Chameleon. Any displayed text is erased.
This function can be used any time to make sure that there are no
random characters left over from whatever was being displayed
previously.

panel_out_lcd_print

DeclarationDeclaration

rtems_boolean panel_out_lcd_print(int ref, rtems_unsigned8 row,
 rtems_unsigned8 col, char *text);

ReturReturn valuen value

Returns TRUE if the function suceeds, otherwise returns FALSE.

Chameleon API Programmer’s Reference 11

ParametersParameters

§ refref : Handle of the panel.

§ rowrow: LCD row to start printing on. Possible values are 0 (Upper row)
or 1 (Lower row). Greater values are ignored.

§ colcol: LCD column to start printing on. Values greater or equal than
PANEL_LCD_MAX_LINE_LEN are ignored.

§ texttext: pointer to the string to be displayed.

DescriptionDescription

This function displays the string pointed to by text on the LCD, starting
at the (row, col) character. If the stringt has a length greater than
PANEL_LCD_MAX_LINE_LEN, extra characters are ignored.

A special case is when the string contains the characters 0x01 to 0x08.
These characters may be redefined by the programmer, using the
function panel_out_redefine(). In this case the user defined characters
are displayed.

panel_out_lcd_redefine

DeclarationDeclaration

rtems_boolean panel_out_lcd_redefine(int ref, rtems_unsigned8 code,
 const rtems_unsigned8 *data);

Return valueReturn value

Returns TRUE if the function suceeds, otherwise returns FALSE.

ParametersParameters

§ refref : Handle of the panel.

§ codecode: Specifies the user character to redefine. Possible values are 0
to 7.

§ datadata: Points to the character pixel map, which is an array of 8
rtems_unsigned8 type elements, each containing the character’s 5
row dots in his LSB bits. The LCD characters are 5 pixels wide by 8
pixels height, so only the 5 LSB of each array element and 8
elements are used. The data can be declared as follows:

Panel API 12

static rtems_unsigned8 lcd_symbol [8] =
{
 0x01, /* 00000001 */
 0x03, /* 00000011 */
 0x07, /* 00000111 */
 0x0f, /* 00001111 */
 0x07, /* 00000111 */
 0x03, /* 00000011 */
 0x01, /* 00000001 */
 0x00 /* 00000000 */
};

DescriptionDescription

Redefines the specified LCD user character. If this character is already
being displayed on the LCD when calling this function, it will change
according to the new definition.

When defining a new character, the hexadecimal values in the data
array are converted to binary form and treated as on/off values for the
actual pixels in the LCD. Because no character in Model #01 of the
Chameleon may be more than 5 pixels wide, this means that only
values between 0x00 (%00000000) and 0x1F (%00011111) are useful.
Higher bits are ignored.

panel_out_led

DeclarationDeclaration

rtems_boolean panel_out_led(int ref, rtems_unsigned32 led_bits);

Return valueReturn value

Returns TRUE if the function suceeds, otherwise returns FALSE.

ParametersParameters

§ refref : Handle of the panel.

§ led_bitsled_bits: bit wise led values (on/off). See the constants in panel01.h
for the currently meaningful values. Other bits apart from these are
ignored.

DescriptionDescription

Turns on/off the specified panel LED. All the LEDs can be operated at
once.

Chameleon API Programmer’s Reference 13

panel_in_new_event

DeclarationDeclaration

rtems_boolean panel_in_new_event(int ref, rtems_boolean wait);

Return valueReturn value

Returns TRUE if the function executes successfully, otherwise returns
FALSE.

ParametersParameters

§ ref ref : Handle of the panel.

§ waitwait: specifies if the function has to wait until a new panel event is
received or exit immediately.

DescriptionDescription

This function asks the panel driver if a new event has been received
from the Panel. It is possible to block the calling task until a new event
is received by setting the wait parameter to TRUE. In this case, the
calling task will be blocked in a cooperative way with the rest of
application’s tasks, wich will continue their normal execution.

Once a new event is received, the calling task will be unblocked and
will continue executing.

If this function is called with the wait parameter set to FALSE, it will
check for a new incoming panel event and will return immediately. If it
executes succesfully, it will return TRUE even if there’s not a new event
received. The program should check then if there is actually a new
event by calling panel_in_potentiometer(), panel_in_encoder(), and
panel_in_key().

Possible events from the Front Panel are keys pressed and encoder and
potentiometer movements.

panel_in_potentiometer

DeclarationDeclaration

rtems_boolean panel_in_potentiometer(int ref,
 rtems_unsigned8 *potentiometer,
 rtems_unsigned8 *value);

Panel API 14

Return valueReturn value

Returns TRUE if the new received panel event correspods to a
potentiometer movement, otherwise returns FALSE.

ParametersParameters

§ refref : Handle of the panel.

§ potentiometerpotentiometer: specifies the number of the potentiometer that has
been moved. For possible values, see the panel01.h constants
definition.

§ valuevalue: specifies the new value of the moved potentiometer in a
range from 0 to 127.

DescriptionDescription

Once a new incoming event from the Panel has been received via a
panel_in_new_event , this function is used to verify if such event
corresponds to a potentiometer movement on the front panel.

panel_in_keypad

DeclarationDeclaration

rtems_boolean panel_in_keypad (int ref, rtems_unsigned32 *key_bits);

Return valueReturn value

Returns TRUE if the new received panel event correspods to a key
pressed, otherwise returns FALSE.

ParametersParameters

§ refref : Handle of the panel.

§ key_bitskey_bits: bit wise key values (on/off). See the constants in
panel01.h for the currently meaningful values. Other key bits apart
from these are ignored.

DescriptionDescription

Once a new incoming event from the Panel has been received via a
panel_in_new_event , this function is used to verify if such event
corresponds to a key pressed on the front panel.

Chameleon API Programmer’s Reference 15

panel_in_encoder

DeclarationDeclaration

rtems_boolean panel_in_encoder(int ref, rtems_unsigned8 *encoder,
 rtems_signed8 *increment);

Return valueReturn value

Returns TRUE if the new received panel event correspods to a encoder
moved, otherwise returns FALSE.

ParametersParameters

§ refref : Handle of the panel.

§ encoderencoder : specifies the encoder number that has been moved. In the
Chameleon model #01, which has only one encoder, this parameter
is allways 1.

§ incrementincrement : specifies the amount of encoder steps actually moved.

DescriptionDescription

Once a new incoming event from the Panel has been received via a
panel_in_new_event , this function is used to verify if such event
corresponds to a encoder moved on the front panel.

2.12.1 Constants in Constants in panel.hpanel.h

The following constants to be used by the programmer are defined in
the file

\Chameleon.sdk\include\chameleon\panel.h

#define PANEL_LCD_MAX_LINE_LEN 16 // Maximum number of characters
 // in a LCD text line

Panel API 16

2.22.2 Constants in Constants in panel01.hpanel01.h

The header file

\Chameleon.sdk\include\chameleon\panel01.h

contains definitions for the Chamelon model #01 specific panel
characteristics. Following is the listing of definitions to keep in mind
when programming the Chameleon front panel.

/* LED BITS DEFINES: */

#define PANEL01_LED_CTRL3 0x01000000
#define PANEL01_LED_CTRL2 0x02000000
#define PANEL01_LED_CTRL1 0x04000000
#define PANEL01_LED_SHIFT 0x08000000
#define PANEL01_LED_EDIT 0x10000000

/* POTENTIOMETER NUMBER DEFINES: */

#define PANEL01_POT_VOLUME 0x00
#define PANEL01_POT_CTRL1 0x01
#define PANEL01_POT_CTRL2 0x02
#define PANEL01_POT_CTRL3 0x03

/* KEY BITS DEFINES: */

#define PANEL01_KEY_GROUP_UP 0x01000000
#define PANEL01_KEY_PAGE_UP 0x02000000
#define PANEL01_KEY_GROUP_DOWN 0x04000000
#define PANEL01_KEY_PAGE_DOWN 0x08000000
#define PANEL01_KEY_PARAM_UP 0x10000000
#define PANEL01_KEY_VALUE_UP 0x20000000
#define PANEL01_KEY_PARAM_DOWN 0x40000000
#define PANEL01_KEY_VALUE_DOWN 0x80000000
#define PANEL01_KEY_EDIT 0x00010000
#define PANEL01_KEY_PART_UP 0x00020000
#define PANEL01_KEY_SHIFT 0x00040000
#define PANEL01_KEY_PART_DOWN 0x00080000

Chameleon API Programmer’s Reference 17

33 FLASH APIFLASH API

The FLASH memory of the Chameleon is used to store applications and
the permanent data used by them. The FLASH is managed through the
FLASH memory library, wich provides with the appropiate functions to
perform read and write operations from the application’s code.

The header file for these functions is stored in:

\Chameleon.sdk\include\chameleon\flash.h

flash_init

DeclarationDeclaration

int flash_init(void);

Return valueReturn value

Returns a non zero value with FLASH memory handle. If the function
fails, it returns zero.

ParametersParameters

None.

DescriptionDescription

This function initializes the flash driver and returns its handle, which is
used in the all the subsecuent FLASH functions calls. No other FLASH
functions may be called before opening the FLASH.

flash_exit

DeclarationDeclaration

rtems_boolean flash_exit(int ref);

3
Chapter

FLASH API 18

Return valueReturn value

Returns TRUE if the FLASH driver was closed succesfully, and FALSE if the
function fails or the driver was already closed.

ParametersParameters

§ refref : Handle of the FLASH.

DescriptionDescription

This function releases the FLASH handle obtained with flash_init. Once
this handle is released, any attempt to use any FLASH function again
without re-initialising it will cause that function to return an error.

flash_read_data

DeclarationDeclaration

rtems_boolean flash_read_data(int ref, rtems_unsigned32 offset,
 rtems_unsigned8 *data,
 rtems_unsigned32 count);

Return valueReturn value

Returns TRUE if the FLASH driver readed succesfully the data, and FALSE
if the function failed.

ParametersParameters

§ refref : Handle of the FLASH.

§ offsetoffset: memory address offset in bytes from where the read is going
to be performed. The valid range of values starts from 0x00000000
up to the value obtained by the flash_get_size() function.

§ datadata: Pointer to a data storage DRAM memory block or variable.

§ countcount: Number of bytes actually read.

DescrDescriptioniption

This function attempts to read a block of count bytes from the FLASH
memory starting at the address specified by offset and stores it in the
DRAM memory block pointed by data.

It is not possible to read the FLASH memory space where the application
code itself is stored. Only the memory area which is unused by the
application can be readed. To obtain the amount of memory available to
read, use flash_get_size().

Chameleon API Programmer’s Reference 19

flash_write_data

DeclarationDeclaration

rtems_boolean flash_write_data(int ref, rtems_unsigned32 offset,
 const rtems_unsigned8 *data,
 rtems_unsigned32 count);

Return valueReturn value

Returns TRUE if the FLASH driver has written succesfully the data, and
FALSE if the function fails.

ParametersParameters

§ refref : Handle of the FLASH.

§ offsetoffset: memory address offset in bytes where the data is going to
be stored. The valid range of values starts from 0x00000000 up to
the value obtained by the flash_get_size() function.

§ datadata: Pointer to the DRAM memory block or variable which contains
the data to be stored.

§ countcount: Number of bytes to write.

DescriptionDescription

This function attempts to write a block of count bytes in the FLASH
memory starting at the address specified by offset and readed starting
at the DRAM memory block pointed by data.

It is not possible to write the memory area where the application code
itself is stored. Only the memory area which is unused by the
application can be written. To obtain the amount of memory available
to write, use flash_get_size().

flash_get_size

DeclarationDeclaration

rtems_boolean flash_get_size(int ref, rtems_unsigned32 *size);

Return valueReturn value

Returns TRUE if the FLASH driver obtained succesfully the available
FLASH memory size, and FALSE if the function fails.

FLASH API 20

ParametersParameters

§ refref : Handle of the FLASH.

§ sizsizee: amount of free FLASH memory available.

DescriptionDescription

This function returns the amount of FLASH memory available to read and
write operations, apart from the memory space occupied by the stored
application’s code.

Chameleon API Programmer’s Reference 21

44 DSP APIDSP API

The Chameleon DSP is managed on the ColdFire side by using the DSP
library, which contains the necessary functions to exchange data
between them.

The header file for these functions is stored in:

\Chameleon.sdk\include\chameleon\dsp.h

dsp_init

DeclarationDeclaration

int dsp_init(int dsp_index, const rtems_unsigned8 *code);

Return valueReturn value

Returns a non zero value with DSP handle. If the function fails, it returns
zero.

ParametersParameters

§ dsp_indexdsp_index: identifier of DSP to be initialized. In the Chameleon
model #01, the value of this parameter is allways 1.

§ codcodee: pointer to the code to be downloaded into the DSP.

DescriptionDescription

This function initializes the DSP driver and downloads the processing
code to run on it. DSP source code (if any) is converted into machine
code at compile time, and the machine code is then stored as an array
of bytes in a C header file. This header file has to be included by the
code calling the function to get access to the parameter code.

When this function is called, the DSP code is trasmitted from the Coldfire
to the DSP56303 via the HI08 port automatically. Once the function has
successfully completed, DSP code execution begins immediately. Before
opening the DSP driver by calling dsp_init, no other DSP function may
be called.

4
Chapter

DSP API 22

dsp_exit

DeclarationDeclaration

rtems_boolean dsp_exit(int ref);

ReReturn valueturn value

Returns TRUE if the DSP driver was successfully closed, otherwise it
returns FALSE.

ParametersParameters

§ refref : Handle of the DSP.

DescriptionDescription

This function releases the DSP handle obtained with dsp_init. Once this
handle is released, any attempt to use any DSP function again without
re-initialising it will cause that function to return an error.

dsp_read_data

DeclarationDeclaration

rtems_boolean dsp_read_data(int ref, rtems_signed32 *data,
 rtems_unsigned32 count);

Return valueReturn value

Returns TRUE if the DSP data were readed successfully, otherwise it
returns FALSE.

ParametersParameters

§ refref : Handle of the DSP.

§ datadata: Pointer to the DRAM memory block or variable to store the
readed data.

§ countcount: Number of words actually read.

DescriptionDescription

This function reads count 32 bit words from the DSP’s HI08 Host port and
stores it in the variable or memory block pointed by data. Values readed
are 24 bit DSP words sign extended to 32 bit. The calling task is blocked
in a cooperative way (other tasks continue its normal execution) until all

Chameleon API Programmer’s Reference 23

the words are read or after 3 seconds after the calling if all the words
were not read.

dsp_write_data

DeclarationDeclaration

rtems_boolean dsp_write_data(int ref, const rtems_signed32 *data,
 rtems_unsigned32 count);

Return valueReturn value

Returns TRUE if the data were written successfully to the DSP, otherwise
it returns FALSE.

ParametersParameters

§ refref : Handle of the DSP.

§ datadata: Pointer to the DRAM memory block or variable from which to
get the data to write to the DSP.

§ countcount: Number of words to write.

DescriptionDescription

This function writes the count 32 bit words stored in the variable or
memory block pointed to by data to the DSP’s HI08 Host port. The DSP
will only read the 24 LSB bits, so the 8 MSB are effectively meaningless.
The calling task is blocked in a cooperative way (other tasks continue its
normal execution) until all the words are written.

dsp_write_command

DefinitionDefinition

rtems_boolean dsp_write_command(int ref, rtems_unsigned8 command,
 rtems_boolean wait);

Return valueReturn value

Returns TRUE if the command is written successfully to the DSP,
otherwise it returns FALSE.

DSP API 24

ParametersParameters

§ refref : Handle of the DSP.

§ commandcommand: Number of DSP command (interrupt vector address) to
write divided by two. Possible values are from 0x00 to 0x7F.

§ waitwait: If TRUE, it instructs the function to wait until the command is
actually written, otherwise the functions returns immediately.

DescriptionDescription

This function is used to write Host Commands to the DSP’s HI08 Host
port. By writing a command on the DSP, the calling routine causes the
DSP to execute an interrupt handling routine whose vector corresponds
to the value specified in the command parameter multiplied by two. If
the parameter wait is set to TRUE, the calling task will be blocked in a
cooperative way (other tasks continue its normal execution) until the
command is actually written to the DSP.

dsp_write_flag0

DeclarationDeclaration

rtems_boolean dsp_write_flag0(int ref, rtems_boolean flag);

Return valueReturn value

Returns TRUE if the flag is written successfully to the DSP, otherwise it
returns FALSE.

ParametersParameters

§ refref : Handle of the DSP.

§ flagflag : Boolean value of the Flag to be written.

DescriptionDescription

This function writes the general purpose flag HSR_HF0 on the DSP’s Host
Port HSR register. Its value is set if flag is TRUE, or zero otherwise.

DSP flags 0 and 1 have no intrinsic meaning to the DSP. They are a
convenience, allowing the programmer to pass information from the
Coldfire to the DSP. It is the programmer’s responsibility to write
appropriate DSP code to monitor and respond to the status of these two
flags.

Chameleon API Programmer’s Reference 25

dsp_write_flag1

DeclarationDeclaration

rtems_boolean dsp_write_flag1(int ref, rtems_boolean flag);

Return valueReturn value

Returns TRUE if the flag is written successfully to the DSP, otherwise it
returns FALSE.

ParametersParameters

§ refref : Handle of the DSP.

§ flagflag : Boolean value of the Flag to be written.

DescriptionDescription

This function writes the general purpose flag HSR_HF1 on the DSP’s Host
Port HSR register. Its value is set if flag is TRUE, or zero otherwise.

Neither of flags 2 or 3 has any special meaning to the Coldfire or RTEMS.
Similar to the HSR_HF0 and HSR_HF1 flags, they can be used to pass
status information from the DSP back to the Coldfire.

dsp_read_flag2

DeclarationDeclaration

rtems_boolean dsp_read_flag2(int ref, rtems_boolean *flag);

Return valueReturn value

Returns TRUE if the flag is read successfully to the DSP, otherwise it
returns FALSE.

ParametersParameters

§ refref : Handle of the DSP.

§ flagflag : Pointer the Boolean value to read the flag.

DescriptionDescription

This function reads the general purpose flag HCR_HF2 on the DSP’s Host
Port HSR register. The variable pointed by flag will be TRUE if this flag is
set, or FALSE otherwise.

DSP API 26

dsp_read_flag3

DeclarationDeclaration

rtems_boolean dsp_read_flag3(int ref, rtems_boolean *flag);

Return valueReturn value

Returns TRUE if the flag is read successfully to the DSP, otherwise it
returns FALSE.

ParametersParameters

§ refref : Handle of the DSP.

§ flagflag : Pointer the Boolean value to read the flag.

DescriptionDescription

This function reads the general purpose flag HCR_HF3 on the DSP’s Host
Port HSR register. The variable pointed by flag will be TRUE if this flag is
set, or FALSE otherwise.

Chameleon API Programmer’s Reference 27

55 Information APIInformation API

The Information driver allows the programmer to get specific
information related to the Chameleon hardware, such as the device’s
serial number, the firmware version and the model number. This is the
only driver that needs not to be previously initialized before using its
functions.

These functions are defined in the file:

\Chameleon.sdk\include\chameleon\info.h

info_get_serial_number

DeclarationDeclaration

rtems_boolean info_get_serial_number(char serial_number[11]);

Return valueReturn value

Returns TRUE if the device serial number is read successfully, otherwise
it returns FALSE.

ParametersParameters

§ serial_numberserial_number: String to store the device serial number.

DescriptionDescription

This function returns the device serial number. This number is the same
that is printed on the device’s case and that is displayed on the LCD
when booting in wait mode and pressing the “Shift” key.

info_get_model

DeclarationDeclaration

rtems_boolean info_get_model(rtems_unsigned8 *model);

5
Chapter

Information API 28

Return valueReturn value

Returns TRUE if the device model’s identifier is read successfully,
otherwise it returns FALSE.

ParametersParameters

§ modelmodel: Variable store the device’s model identifier.

DescriptionDescription

This function returns the device model identifier. The purpose of this
function is to allow compatibily with future models, by letting the
application to know which header files has to include to work properly.

At the time of writing, only one model of the Chameleon is available
and thus there is only one set of include files for the hardware
configuration.

