
TECHNICAL DOCUMENT 
STD001 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

chameleon applications developer’s guide 
 

revision 1 | 05.2002 
chameleon S.D.K. v1.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright © 2001-2002 
Soundart – Highly Original Technologies 
www.soundart-hot.com 
 
 
Soundart makes no warranty of any kind, expressed or implied, with respect to the contents or use 
of the material in this document or in the software and hardware it describes, and specifically 
disclaims any responsibility for any damages derived from its use. Hardware and Software may 
contain design defects or errors known as errata which may cause the product to deviate from 
published specifications. Soundart reserves the right to revise and modify the topics covered in this 
book periodically, which are subject to change without notice. This document may be reproduced 
and distributed freely, provided no alterations of any kind are made. Soundart software is subject to 
the terms of the Soundart Tools Software license. Third party software is subject to the terms of their 
respective owners license. Third party trademarks and registered trademarks are property of their 
respective owners. 
 
 
 
 
 
 



Chameleon Application Developer’s Guide iii 

Table of ContentsTable of ContentsTable of ContentsTable of Contents    
 

0000 About This DocumentAbout This DocumentAbout This DocumentAbout This Document........................................................................................................................................................................................................................................................................................................................................................4444 
1111 IntroductionIntroductionIntroductionIntroduction ....................................................................................................................................................................................................................................................................................................................................................................................................................5555 
2222 Hardware ArchitectureHardware ArchitectureHardware ArchitectureHardware Architecture................................................................................................................................................................................................................................................................................................................................................6666 

2.1 Introduction ...........................................................................................6 
2.2 DSP .........................................................................................................8 
2.3 ColdFire ..................................................................................................9 
2.4 Front Panel.......................................................................................... 10 
2.5 Rear Panel........................................................................................... 12 

3333 Software ArchitectureSoftware ArchitectureSoftware ArchitectureSoftware Architecture ............................................................................................................................................................................................................................................................................................................................................13131313 
3.1 Introduction ........................................................................................ 13 
3.2 ColdFire ............................................................................................... 15 

3.2.1 RTEMS ..................................................................................... 15 
3.2.2 MidiShare ............................................................................... 19 
3.2.3 Chameleon Specific Libraries................................................. 22 
3.2.4 Firmware ................................................................................ 25 

3.3 DSP ...................................................................................................... 26 
3.3.1 HI08 Host Port ........................................................................ 27 
3.3.2 ESSI0 Port ............................................................................... 29 
3.3.3 External Memory ................................................................... 31 

4444 Development ToolsDevelopment ToolsDevelopment ToolsDevelopment Tools ............................................................................................................................................................................................................................................................................................................................................................33333333 
4.1 Introduction ........................................................................................ 33 
4.2 Motorola Suite56TM DSP Tools ............................................................ 33 

4.2.1 DSP GUI56300 Simulator ....................................................... 34 
4.3 GNU Compiler Collection .................................................................... 34 
4.4 Chameleon Development Environment (CDE) .................................. 37 
4.5 Chameleon Toolkit.............................................................................. 38 

4.5.1 Hints on Debugging Aplications............................................ 42 
4.6 Accesories ........................................................................................... 43 

4.6.1 Scilab ...................................................................................... 43 
4.7 SDK Structure ...................................................................................... 43 

5555 Where to Go From HereWhere to Go From HereWhere to Go From HereWhere to Go From Here................................................................................................................................................................................................................................................................................................................................46464646 
5.1 SDK Code Examples ............................................................................ 46 

5.1.1 Hello ....................................................................................... 46 
5.1.2 Welcome ................................................................................ 46 
5.1.3 Showpanel ............................................................................. 47 
5.1.4 Dspthru................................................................................... 47 
5.1.5 Dspmem................................................................................. 47 
5.1.6 Cfthru...................................................................................... 47 
5.1.7 Hostcommands ...................................................................... 48 
5.1.8 Midimon ................................................................................. 48 
5.1.9 MonoSynth ............................................................................. 48 

5.2 Tutorials .............................................................................................. 49 
5.2.1 DSP Introductory Tutorials ..................................................... 49 
5.2.2 An audio level meter for the Chameleon............................. 50 

AAAA SDK Documentation IndexSDK Documentation IndexSDK Documentation IndexSDK Documentation Index ................................................................................................................................................................................................................................................................................................................51515151 
BBBB MIDI Implementation ChartMIDI Implementation ChartMIDI Implementation ChartMIDI Implementation Chart ........................................................................................................................................................................................................................................................................................................53535353



About This Document 4

0000    About This DocumentAbout This DocumentAbout This DocumentAbout This Document    

This manual is written for developers who wish to write audio and MIDI 
applications for the Chameleon. It is a guide for the Chameleon Software 
Development Kit (from now on Chameleon SDK), and it contains an 
introduction to all of the platform’s hardware and software components, 
an introduction to the development tools provided by Soundart, and a 
guide to all the supplied documentation. This document covers the 
version 1.1 of the Chameleon SDK for the Chameleon model #01. To 
check for successive updates, availibility, software and news, it is 
recommended to visit Soundart’s website www.soundart-hot.com.

 

0 
Chapter 



Chameleon Application Developer’s Guide 5 

1111    IntroductionIntroductionIntroductionIntroduction    

Chameleon is a versatile device exclusively designed for the 
implementation of realtime audio and MIDI digital signals processing and 
synthesis. Conceived as an open platform, that can be totally 
programmed by the user, its specific functionality will depend on the 
code executed each time. This code can be generated by the user by way 
of the appropiate development tools, which are freely distributed and 
can be obtained free of charge. 

The key concepts of the system are control control control control and processingprocessingprocessingprocessing. The control 
side is carried out by means of a front panelfront panelfront panelfront panel programmable for the 
interaction with the user, and a 32 bit microcontrollermicrocontrollermicrocontrollermicrocontroller, which carries out 
all the system’s control tasks and communications. The processing part is 
done by means of a digital signal processordigital signal processordigital signal processordigital signal processor (DSP) which handles all the 
real time audio processing and/or generation. 

The external device connections are two analog non balanced audio 
inputs and two outputs, a headphones stereo output, one MIDI input and 
one output, plus an standard RS-232 port for debugging purposes.

1 
Chapter 



Hardware Architecture 6

2222    Hardware ArchitectureHardware ArchitectureHardware ArchitectureHardware Architecture    

2.12.12.12.1    IntroductionIntroductionIntroductionIntroduction    

In this section the Chameleon hardware architecture will be described, 
from the programmer’s point of view. Before understanding the 
applications developing methodology, it is important to know the 
elements that integrate the device and to have a global idea about how 
these are related to each other in the platform’s hardware structure. 

FigureFigureFigureFigure    2222....1111 shows the Chameleon functional blocks diagram. Internally it 
contains two processors working in a totally asynchronous way: a general 
purpose 32 bit Motorola’s ColdFire family microcontroller running at 40 
MHz, and a 24 bit Motorola DSP running at 100 MHz. 

Figure Figure Figure Figure 2222....1111    

Chameleon Hardware Architecture 
 

ColdFireColdFireColdFireColdFire
MCF5206eMCF5206eMCF5206eMCF5206e
ColdFireColdFireColdFireColdFire

MCF5206eMCF5206eMCF5206eMCF5206e

PANELPANELPANELPANELPANELPANELPANELPANEL

40 MHz40 MHz

FLASHFLASHFLASHFLASHFLASHFLASHFLASHFLASH

EDOEDOEDOEDO
DRAMDRAMDRAMDRAM

EDOEDOEDOEDO
DRAMDRAMDRAMDRAM

100 MHz100 MHz

AD/DAAD/DAAD/DAAD/DAAD/DAAD/DAAD/DAAD/DA 48 kHz48 kHz

EDOEDOEDOEDO
DRAMDRAMDRAMDRAM

EDOEDOEDOEDO
DRAMDRAMDRAMDRAM

4 POTENTIOMETERS4 POTENTIOMETERS

ENCODERENCODER

KEYPADKEYPAD

LCD
2 x 16

LCD
2 x 16

MIDI
IN

MIDI
IN

MIDI
OUT

MIDI
OUT

AUDIO
OUT

AUDIO
OUT

AUDIO
IN

AUDIO
IN

DSP56303DSP56303DSP56303DSP56303DSP56303DSP56303DSP56303DSP56303

1M x 8

4M x 16

4M x 24

HI08 HOST 
PORT

PHONESPHONES

AMPAMP

IN
TE

RN
A

L 
B

U
S

RS-232
DEBUG
PORT

RS-232
DEBUG
PORT

5 LEDs 5 LEDs 

ESSI0 PORT

 

 

2 
Chapter 



Chameleon Application Developer’s Guide 7 

The DSP takes exclusively care of the audio generation and/or processing 
tasks. It has a connection to the analogic world through an AD/DA 24 bit 
stereo converter working at a sample rate of 48 KHz, so that it can 
receive digital audio from the AD converter’s module, and to generate 
digital audio to the DA converter’s module. The audio data are received 
and transmitted in synchronous interleaved serial format via the DSP’s 
ESSI0 port. 

Internally the DSP owns 8KWord1 of high speed SRAM type memory. 
Furthermore, it has been endowed with a 4MWord DRAM EDO type 
external memory subsystem, totally available for the audio operations. 
The internal SRAM can be used to handle very frequently accessed data 
or routines. The external DRAM, which is slower, can be used to store less 
frequently used data or code, such as coefficient tables, delay lines, Host 
communication routines, etc. In any case, there is no restriction in the 
available memory use, except for terms of efficiency. 

ColdFire is responsible for the handling all the system control tasks. In 
fact, the complete user’s code will be downloaded on it, as we’ll see in 
the following chapters. Following are the main tasks of such a 
microcontroller: 

!" System initialization. 

!"Downloading of the DSP code and sending the appropiate control 
signals and data during the application’s execution. 

!"Non volatile memory handling. 

!"MIDI (event generation and reception) and RS-232 (debugging) 
communication control towards the exterior. 

!" Front panel controls management. 

ColdFire owns an external memory subsystem composed by 8 MByte of 
DRAM EDO memory and 1 MByte of rewritable non volatile FLASH type 
memory for the permanent storing of data and code. 

The front panel establishes the communication interface with the 
application’s user through its controls. These controls are also handled by 
the ColdFire through an internal bus. 

Although both processors, DSP and ColdFire, run independently, there 
exists a communication bus between the two which allows to perform 
data transfers in both directions. It is a 8 bit wide parallel bus, called HI08 
Host Port, included in the DSP to handle direct connection with other 
microprocessors. 

The next sections describe in further details all the above mentioned 
components. 

                                            
1 From now onwards, 1 Word = 24 bits except otherwise specified. 



Hardware Architecture 8

2.22.22.22.2    DSPDSPDSPDSP    

DSP is the main component of the Chameleon, which takes benefit from 
its huge signal processing power to allow powerful, efficient and 
complex applications implementation. Bearing in mind the objective of 
giving the programmer the whole DSP raw processing power, entire 
access with no restrictions to all its resources is provided, so the DSP can 
be exclusively dedicated to the application’s specific processing tasks. 
Therefore the DSP programming is done without the use of any 
“intermediary” nor abstraction layers that could otherwise unnecessarily 
overload the application. 

The flexibility obtained by complete access to the DSP has an evident 
drawback: for a Chameleon complete applications developer, an 
exhaustive knowledge of such component will be indispensable in order 
to obtain maximum benefit of its possibilities. This is the “price” that 
must be payed to become a true DSP programmer. For those who aren’t 
familiar with the DSP, a comprehensive reading of the extensive 
documentation available is recommended. In addition to the 
documentation provided with the Chameleon SDK (see documentation 
index), it’s also recommended to periodically visit the Motorola 
Semiconductors Products Sector webpage, www.mot-sps.com, to check 
for interesting up-to-date information. 

The DSP used is the Motorola DSP56303,which belongs to the DSP56000 
family of 24 bit fixed point digital signal processors, with modified 
Hardvard architecture optimized for multiply and accumulation (MAC) 
operations. 

This DSP executes each instruction on a clock cycle, achieving 100 mega 
instructions per second (MIPS) with the 100 MHz clock that it is provided 
with. Its internal architecture allows a highly parallelizable instruction set 
(with up to an arithmetic operation, a logic one and two data moves in a 
single instruction), which includes hardware loop control to avoid the 
overhead inherent to the traditional software loop control instructions. 

The Arithmetic-Logic unit operates with 24 bit-wide registers and uses 
internal 56 bit-wide accumulators to increase the dynamic range and so 
reduce the error accumulated during consecutive calculus. It has two 
different rounding methods (convergent and two’s complement), 
saturation mode (without accumulator overflow), automatic scaling 
mode, and extended precission mode (double precission multiply). 

The bus architecture divides the available system’s memory into three 
types: P, X and Y. P memory space contains the program’s instructions, 
and both X and Y memory spaces contain the data. With this structure, 
access to one instruction and two operands at the same time is achieved.  

Memory access is highly optimized by means of a dedicated address 
generation unit, which allows flexible addressing modes. In addition to 
the linear data accessing, DSP has special accessing modes which are 
very useful for specific algorithm types, which do not imply overload on 



Chameleon Application Developer’s Guide 9 

the code: circular buffers and reverse ordering (the later is specially 
useful for the Fast Fourier Transform calculation). 

The DSP owns 8 KWord of high speed SRAM internal memory (accessible 
without waiting cycles), which can be assigned in several ways 
(distributed into P, X or Y space memory), depending on the algorithm 
needs. It is also possible to use part of such memory to perform cache 
during the external memory accesses.  

An important feature is the possibility to execute fast interrupt routines 
which avoid the typical overhead on the processor’s interrupts. Once an 
interrupt source has been enabled and if the first two instructions in the 
interrupt’s attention routine doesn’t include a subroutine jump, the 
interrupt is executed in a “fast” way: only these two instructions are 
executed, without saving any registers onto the stack and with no need 
to include the return from interrupt instruction. This way of processing 
interrupts is very convenient in most cases and it notably minimizes the 
latency inherent to the concept of interrupt. 

The DSP processor’s core efficiency is boosted by a hardware stack 
structure, direct memory access (DMA) modules which can be used in 
several modes and automatic refresh generators for dynamic memories 
(DRAM). 

2.32.32.32.3    ColdFireColdFireColdFireColdFire    

As we shall see in the next chapter, since the whole control code that 
runs on the ColdFire can be created in high level language (C/C++) with 
operating system calls (RTEMS and MidiShare), the use of this 
microcontroller is transparent in a certain degree (and therefore so is the 
access to the system’s resources), so that neither a deep knowledge 
about its internal architecture and operation nor its assembly language 
are not essential. Nevertheless, it is also recommended to read the 
provided documentation (see documentation index) and the periodic 
check for news and updates on the Motorola website (www.mot-
sps.com) to achieve the maximum benefit from such powerful 
microcontroller. 

The chosen microcontroler is a Motorola MCF5206e ColdFire. This 
processor uses a 32 bit word length and has a Varible-Length RISC 
instruction set (Generated code uses less memory than traditional RISC 
instrucion sets), which is a subset of those available in the Motorola 
68000 family architecture, but using only one clock cycle per instruction 
instead. 

ColdFire owns 8 KBytes of internal memory and a memory cache handler 
to reduce the waiting time during the external accesses. Additionally an 
external memory subsystem has been provided, comprising an 8 MByte 
of DRAM EDO memory plus 1 MByte of FLASH type non volatile and 
rewritable memory. 



Hardware Architecture 10

It also has two DMA channels, refresh generators to allow glueless DRAM 
memory connection, two serial communication ports and two 16 bit 
timers. 

2.42.42.42.4    Front PanelFront PanelFront PanelFront Panel    

The front panel consist of the communication interface with the 
application user. Through this panel the commands are received and the 
current state of the running application is displayed. 

FigureFigureFigureFigure    2222....2222 shows the panel aspect with the most important components 
enlarged. It consists of: 

!" Four potentiometers. The rightmost three of them are enlarged on 
the picture, each with its own number, with the “realtime control” 
caption below all of them, as they can be assigned to control realtime 
parameters of the application. The fourth potentiomenter (placed on 
the panel’s left) is marked as “volume”, and it is conceived to act as 
the device’s audio volume control although its actual functionality 
cand be changed arbitrarily. 

!"A programmable incremental rotative encoder, which can be used as 
another general purpose control. 

!" Twelve push buttons. These are divided into two groups, as showed 
on the figure. As their functionality is totally application dependent, 
their captions are specified in a generic way. These are conceived to 
act on a hierarchical menu tree structure, but is the programmer’s 
concern to assing each of these twelve keys its specific function 
inside his application. The arrow above and below each button are 
intended to mean “up” and “down” (i.e. “param up”, “param down”, 
“group up”, “group down” and so on). 

!"A backlight LCD display with 2 rows of 16 alphanumeric characters 
each. It has a predefined ASCII character set. Each character is 
generated on a 8 rows by 5 columns dot matrix. Additionally, eight 
custom characters can be defined by specifying the 8x5 “bitmap” for 
each one. 

!" Five LED diodes. Three of them are placed over each of the realtime 
potentiometers, and the remaining two are placed beside the “edit” 
and “shift” keys, although its functionality is not linked with these 
controls in any way, and once again it is the programmer task to 
assing what they indicate when turned on, off, blink, etc. 

!"A stereo TRS ¼” jack headphones output which is bridged with the 
device audio line ouput. 



Chameleon Application Developer’s Guide 11 

Figure Figure Figure Figure 2222....2222    

Front Panel of the Chameleon 
 

 

From the programmer’s point of view, access to all of these controls is 
performed through the ColdFire. Therefore a library is provided 
implementing all the necessary functions to access these controls 
(reading the state of each potentiometer, the encoder and the push 
buttons, switching on/off the LED diodes and displaying information on 
the LCD). These functions will be described on Chapter 3, dedicated to the 
Software aspects of the Chameleon. 



Hardware Architecture 12

 

2.52.52.52.5    Rear Panel Rear Panel Rear Panel Rear Panel     

Figure 2.3 shows the rear panel of the Chameleon, where all the device’s 
connections are placed (except the headphones connector, which is 
placed on the front panel). These connections are, from left to right: 

!" 9 VDC/1.2A Power supply connection. 

!"A MIDI input and ouput, with standard DIN 5 connectors. 

!" Two analog non balanced input channels, with TRS ¼” jack 
connectors. 

!" Two analog non balanced output channels, with TRS ¼” jack 
connectors. 

!"A DB-9 connector (RS-232 standard) for debugging functions. 

Figure Figure Figure Figure 2222....3333    

Rear Panel of the Chameleon 
 

 



Chameleon Application Developer’s Guide 13 

3333    Software ArchitectureSoftware ArchitectureSoftware ArchitectureSoftware Architecture    

3.13.13.13.1    IntroductionIntroductionIntroductionIntroduction    

The Chameleon’s distinctive characteristic lies in the fact that it is a fully 
programmable system. To allow the programmer full access to all the 
physical resources, a software structure (including all the necessary tools) 
has been designed to allow access in an easy and transparent way. This 
chapter describes all the software aspects that the developer has to keep 
in mind when programming the Chameleon. 

Programs generated by the Chameleon user (applications) can be 
downloaded on any other Chameleon by using a standard MIDI 
sequencer or via the RS-232 connection. Such applications will usually be 
generated by using the Chameleon Development Environment, CDE 
(although other development environments can be used, such as 
Microsoft’s Visual Studio). A second tool, the Chameleon Toolkit, will be 
used to debug the applications running on the device itself and finally to 
generate distributable files (either MIDI or propietary for RS-232 
formats), ready to be downloaded on any other Chameleon. 

All the provided development tools work only on PC with Windows 98 or 
higher operating system (Windows 98/ME/NT/2000/XP). Any other 
Windows version could work but it hasn’t been tested and therefore 
proper operation is not guaranteed. 

Normally, during the debugging process applications will be downloaded 
and executed on the ColdFire DRAM volatile memory. Once the 
applications are debugged, these can be stored on the non volatile and 
rewritable (FLASH) memory, so that they will be automatically executed 
any time the system starts and is initialised. The portion of the FLASH 
memory not utilized by the application can be used by the application 
itself to store the data that user wishes to maintain once the device is 
turned off (such as presets, configuration, sounds, etc.). 

The method applied to generate and store the applications into the 
Chameleon internal memory uses a highly secure confidentiality and 
protection scheme, based on the device’s serial number. This feature 
allows the developers to sell their applications with the guarantee these 
applications will work only on the device with the serial number for 
which they were generated, and not on any other device. The 
programmer is free to decide if he wants to generate his application to 

3 
Chapter 



Software Architecture 14

run on any device to be freely distributed or to run on a single device to 
avoid piracy.  

FigureFigureFigureFigure    3333....1111 shows all the available functional software blocks and how 
these interact one each other.  

Figure Figure Figure Figure 3333....1111    

Chameleon’s Software Architecture. 

The user’s code comprises the application itself, which is formed by a 
control part and a processing part. Henceforth, all references to “the 
application” will be made without distinction to the control or the 
processing part, or both, depending on the context (Mainly ColdFire or 
DSP). 

The whole control part runs on the ColdFire. This code can be written in 
ColdFire assembler (not recommended due to possibly unnecessary 
complexity) or in C/C++. This code is then compiled and linked with the 
appropiate tools. Drivers are available to access all the physical system 
resources (panel, DSP, MIDI, FLASH memory and information), as well as 
the RTEMS operating system’s own services (tasks, timers, message 
queues, etc.). 

The processing code part runs on the DSP. Usually that code will be 
written in the DSP assembly language (Optionally the code can be 
written in C, but is not recommended as efficiency will decrease). This 
code is exclusively specialized in handling audio signals, and in less 
degree in the communication with the Coldfire-side application part. 

The device has a boot program (firmware) which executes all the 
necessary configuration and initialization tasks, and automatically 
transfers the whole system control to the application that is stored in 
FLASH memory (or it remains in waiting state if there is no application 
stored). 

RTEMS

FLASHFLASHFLASHFLASH
DriverDriverDriverDriver

COLDFIRECOLDFIRECOLDFIRECOLDFIRECOLDFIRECOLDFIRECOLDFIRECOLDFIRE

PANELPANELPANELPANELPANELPANELPANELPANEL USER 
CODE

DSPDSPDSPDSPDSPDSPDSPDSP
INFO INFO INFO INFO 

Driver Driver Driver Driver 

USER 
CODE

MIDI MIDI MIDI MIDI 
Driver Driver Driver Driver 

DSP DSP DSP DSP 
Driver Driver Driver Driver 

MidiShareMidiShareMidiShareMidiShare

PANEL PANEL PANEL PANEL 
Driver Driver Driver Driver 

HI08HI08HI08HI08

ESSI0ESSI0ESSI0ESSI0

MIDI IN/MIDI IN/MIDI IN/MIDI IN/OUTOUTOUTOUT AUDIO IN/AUDIO IN/AUDIO IN/AUDIO IN/OUTOUTOUTOUT

RTEMSRTEMS

FLASHFLASHFLASHFLASH
DriverDriverDriverDriver
FLASHFLASHFLASHFLASH
DriverDriverDriverDriver

COLDFIRECOLDFIRECOLDFIRECOLDFIRECOLDFIRECOLDFIRECOLDFIRECOLDFIRE

PANELPANELPANELPANELPANELPANELPANELPANELPANELPANELPANELPANELPANELPANELPANELPANEL USER 
CODE

DSPDSPDSPDSPDSPDSPDSPDSP
INFO INFO INFO INFO 

Driver Driver Driver Driver 
INFO INFO INFO INFO 

Driver Driver Driver Driver 

USER 
CODE
USER 
CODE

MIDI MIDI MIDI MIDI 
Driver Driver Driver Driver 
MIDI MIDI MIDI MIDI 

Driver Driver Driver Driver 

DSP DSP DSP DSP 
Driver Driver Driver Driver 
DSP DSP DSP DSP 

Driver Driver Driver Driver 

MidiShareMidiShareMidiShareMidiShare

PANEL PANEL PANEL PANEL 
Driver Driver Driver Driver 
PANEL PANEL PANEL PANEL 
Driver Driver Driver Driver 

HI08HI08HI08HI08

ESSI0ESSI0ESSI0ESSI0

MIDI IN/MIDI IN/MIDI IN/MIDI IN/OUTOUTOUTOUT AUDIO IN/AUDIO IN/AUDIO IN/AUDIO IN/OUTOUTOUTOUT



Chameleon Application Developer’s Guide 15 

3.23.23.23.2    ColdFireColdFireColdFireColdFire    

The whole application is downloaded and executed on the ColdFire, 
which is the main core for the control tasks. Initially the application part 
of the DSP is included with the specific ColdFire code. During the 
initialization process, ColdFire must supply the DSP with its own part of 
code, by making use of a specific driver. This mechanism is explained in 
the subsequent sections. 

The code for the ColdFire is written in C/C++ language or ColdFire 
assembler, and is compiled with the processor’s specific GNU 
development tools set. An application is made of a set of user 
subroutines that make calls to the operating system and to the provided 
libraries, plus the application’s own libraries and the object code of the 
DSP program converted into data for the ColdFire (see Chapter 4, 
dedicated to the development tools). 

The Chameleon SDK has a built-in set of object code libraries which 
simplify the task of creating applications and provide the programmer 
with a standard computer’s typical environment, optimized for audio and 
MIDI data. These libraries include: 

!" RTEMS, a Multitask Real Time Operating System. 

!" C Standard library (printf, open, strlen...). 

!"Math standard floating point (emulated in the ColdFire) library (sin, 
cos, log…). 

!"MidiShare, a MIDI Operating System. 

!" Specific functions library to access and control the Chameleon’s 
resources in a transparent way.  

3.2.13.2.13.2.13.2.1    RTEMSRTEMSRTEMSRTEMS    

RTEMS (Real-Time Executive for Multiprocessor Systems) is a priority 
based and event orientated multitasking realtime operating system. It 
was developed by On-Line Applications Research Corporation 
(www.oarcorp.com) for a missile guided system for the american 
governement, and it is currently open and freely distributed, with 
continued support and updates. RTEMS is available for several hardware 
platforms, among which is the Motorola 68000 family (from which the 
ColdFire derives). 

RTEMS simplifies the development of complex applications, allowing the 
programmer to make a functional division into tasks (processes), and 
providing the necessary directives for synchronization and 
communication of all the created tasks, which are executed in a 
multiprocessing environment. The operating system takes control over 
the Chameleon hardware and offers the programmer an abstraction of it 



Software Architecture 16

through a flexible drivers system (with the typical open/close, 
read/write, ioctl calls), and so controlling and simplifying the different 
tasks access to the low level resources. 

The Chameleon SDK includes RTEMS versión 4.5.0, modified by Soundart 
to adapt it to the Chameleon’s specific demands. From a programmer’s 
point of view, these changes are virtually transparent, except for the 
following features, which are not available: 

!" System configuration and initialization. 

!" Interrupts. 

!"Multiprocessor support. 

!"Dual memory access handler. 

The remaining high level RTEMS features available for the programmer in 
the operating system library are: 

!" Tasks. 

!" System Clock. 

!" Timers. 

!" Semaphores. 

!"Message queues. 

!" Events. 

!" Signals. 

!"Dynamic memory handling (Regions and Partitions). 

!"Device drivers. 

!" Rate monotonic services (Running periodical tasks with extended 
time precision). 

!" Extensions (Posibility to process the system’s critycal events). 

Tasks are the main component in an RTEMS application. There exists the 
possibility to create multiple tasks which run in a “simultaneous” and 
asynchronous fashion, each with different priorities, thus allowing an 
overall functional simplification. It is possible to dynamically create, 
pause, restart, suspend or delete tasks as a response to given events 
inside an application. Tasks can make use of semaphores, message 
queues, events or signals to synchronize and communicate between each 
other, and timers and rate monotonic to perform periodical actions. 

For instance, a typical Chameleon generic application could include a task 
that periodically checks the front panel for the user input and another 



Chameleon Application Developer’s Guide 17 

task to monitor incoming MIDI events from the MIDI port. A message 
queue could be used by these two tasks to communicate such events to 
a third task. This third task, could process and recognize the incoming 
events, and then use the DSP driver to send the appropiate command or 
data to the processing program running on the DSP, which would be 
appropiately updated. 

The RTEMS standard configuration and initialization procedure is 
automatically performed by the device firmware. Unlike the standard 
RTEMS version, the Chameleon SDK version only requires specification of 
three parameters: a function called rtems_main, and two variables, 
rtems_workspace_start and rtems_workspace_size. 

Each Chameleon application must include a function named rtems_main 
(in fact it is actually a task), which is called by RTEMS once it has 
initialized its services. Usually this main task performs the application 
initialization, creates and runs the required application specific tasks and 
allocates the necessary resources. Also two variables must be defined: 
one called rtems_workspace_start and another one called 
rtems_workspace_size. The first one must be an array of 
rtems_unsigned32 data (See the RTEMS documentation for the used data 
types reference), with a size specified by rtems_workspace_size. These 
two variables define a memory space called workspace which will be 
used by RTEMS to house its internal data structures (The maximum RTEMS 
resources amount, like tasks, semaphores, etc. is not limited, but 
dynamically assigned by using the available space inside the workspace). 
A typical 128 Kbyte value is enough for most of the applications, 
although it may be necessary perhaps to increase this value for 
applications that use many operating system resources. 

3.2.1.13.2.1.13.2.1.13.2.1.1    Available RTEMS Functions ListingAvailable RTEMS Functions ListingAvailable RTEMS Functions ListingAvailable RTEMS Functions Listing    

Following is a detailed list of the RTEMS functions available for the 
Chameleon applications programmer, grouped into their functionality 
inside the system. Those standard RTEMS functions that are not included 
in the Chameleon specific RTEMS version have been excluded. For a 
complete reference of these functions and its data types, plus a detailed 
RTEMS description, please refer to the RTEMS C User’s Guide provided in 
the Chameleon SDK documentation. 

/* TASKS */ 
rtems_task_create 
rtems_task_ident 
rtems_task_start 
rtems_task_restart 
rtems_task_suspend 
rtems_task_resume 
rtems_task_is_suspended 
rtems_task_set_priority 
rtems_task_mode 
rtems_task_get_note 
rtems_task_set_note 
rtems_task_wake_after 
rtems_task_wake_when 
rtems_task_variable_add 
rtems_task_variable_get 
rtems_task_variable_delete 
 
/* CLOCK */ 



Software Architecture 18

rtems_clock_set 
rtems_clock_get 
 
/* TIMER */ 
rtems_timer_create 
rtems_timer_ident 
rtems_timer_cancel 
rtems_timer_delete 
rtems_timer_fire_after 
rtems_timer_fire_when 
rtems_timer_reset 
 
/* SEMAPHORES */ 
rtems_semaphore_create 
rtems_semaphore_ident 
rtems_semaphore_delete 
rtems_semaphore_obtain 
rtems_semaphore_release 
rtems_semaphore_flush 
 
/* MESSAGE QUEUES */ 
rtems_message_queue_create 
rtems_message_queue_ident 
rtems_message_queue_delete 
rtems_message_queue_send 
rtems_message_queue_urgent 
rtems_message_queue_broadcast 
rtems_message_queue_receive 
rtems_message_queue_get_number_pending 
rtems_message_queue_flush 
 
/* EVENTS */ 
rtems_event_send 
rtems_event_receive 
 
/* SIGNALS */ 
rtems_signal_catch 
rtems_signal_send 
 
/* PARTITIONS */ 
rtems_partition_create 
rtems_partition_ident 
rtems_partition_delete 
rtems_partition_get_buffer 
rtems_partition_return_buffer 
 
/* REGIONS */ 
rtems_region_create 
rtems_region_ident 
rtems_region_delete 
rtems_region_extend 
rtems_region_get_segment 
rtems_region_return_segment 
rtems_region_get_segment_size 
 
/* DEVICE DRIVERS */ 
rtems_io_lookup_name 
rtems_io_open 
rtems_io_close 
rtems_io_read 
rtems_io_write 
rtems_io_control 
 
/* RATE MONOTONIC */ 
rtems_rate_monotonic_create 
rtems_rate_monotonic_ident 
rtems_rate_monotonic_cancel 
rtems_rate_monotonic_delete 
rtems_rate_monotonic_period 
rtems_rate_monotonic_get_status 
 
/* EXTENSIONS */ 
rtems_extension_create 
rtems_extension_ident 
rtems_extension_delete 
 
/* FATAL ERROR */ 



Chameleon Application Developer’s Guide 19 

rtems_fatal_error_occurred 
 
/* SUPPORT */ 
rtems_build_name 
rtems_get_class 
rtems_get_node 
rtems_get_index 

3.2.23.2.23.2.23.2.2    MidiShareMidiShareMidiShareMidiShare    

MidiShare is a MIDI multitasking real time pseudo-operating system, 
developed by Grame in France (http://www.grame.fr/Midishare). As 
RTEMS, it is a freely distributed open platform, with periodical updates. 
The Chameleon SDK includes MidiShare version 1.86. 

All the MIDI functionality required by an application for the Chameleon 
can be implemented by making use of MidiShare. This system 
implements specific handles to manage MIDI events, such as event 
memory handling, synchronizing and timing, MIDI tasks and 
communications. 

Communication between MIDI tasks is based on high level events instead 
of byte packets, which use to be inefficiently addressed by the traditional 
memory handlers. 

Furthermore, MidiShare includes a library called Player, which 
implements a complete multitrack MIDI sequencer, with track select and 
syncronizing selectable type (internal, external, SMPTE, MTC, …), and the 
possibility to read standard MIDI files. 

In the Chameleon architecture, MidiShare uses RTEMS for its low level 
functions, such as the MIDI port access trough a driver. This way the MIDI 
communication in an application is totally transparent for the 
programmer, which has a flexible and robust environment with a highly 
precise timing. 

3.2.2.13.2.2.13.2.2.13.2.2.1    AvAvAvAvailable MidiShare Functions Listingailable MidiShare Functions Listingailable MidiShare Functions Listingailable MidiShare Functions Listing    

The following is a list of the available MidiShare functions. For a complete 
referenc, please refer to the MidiShare Developer Documentation and the 
Player Reference Manual, both provided with the Chameleon SDK 
documentation (See documentation index). 

/*  MIDISHARE ENVIRONMENT */ 
MidiShare 
MidiGetVersion 
MidiCountAppls 
MidiGetIndAppl 
MidiGetNamedAppl 
MidiOpen 
MidiClose 
MidiGetName 
MidiSetName 
MidiGetInfo 
MidiSetInfo 
MidiGetFilter 
MidiSetFilter 
MidiGetRcvAlarm 
MidiSetRcvAlarm 



Software Architecture 20

MidiGetApplAlarm 
MidiSetApplAlarm 
MidiConnect 
MidiIsConnected 
MidiGetPortState 
MidiSetPortState 
MidiGetTime 
MidiSendIm 
MidiSend 
MidiSendAt 
MidiReadSync 
MidiWriteSync 
MidiCall 
MidiTask 
MidiDTask 
MidiForgetTask 
MidiCountDTasks 
MidiFlushDTasks 
MidiExec1DTask 
 
/* EVENTS */ 
MidiFreeSpace 
MidiNewCell 
MidiFreeCell 
MidiTotalSpace 
MidiGrowSpace 
MidiNewEv 
MidiCopyEv 
MidiFreeEv 
MidiSetField 
MidiGetField 
MidiAddField 
MidiCountFields 
MidiCountEvs 
MidiGetEv 
MidiAvailEv 
MidiFlushEvs 
 
/* SEQUENCES */ 
MidiNewSeq 
MidiAddSeq 
MidiFreeSeq 
MidiClearSeq 
MidiApplySeq 
 
/* FILTERS */ 
MidiNewFilter 
MidiFreeFilter 
MidiAcceptPort 
MidiAcceptChan 
MidiAcceptType 
MidiIsAcceptedPort 
MidiIsAcceptedChan 
MidiIsAcceptedType 
 
/* STREAMS */ 
MidiStreamInitMthTbl 
MidiStreamInit 
MidiStreamReset 
MidiStreamPutEvent 
MidiStreamGetByte 
MidiStreamCountByte 
MidiParseError 
MidiParseInit 
MidiParseReset 
MidiParseInitMthTbl 
MidiParseInitTypeTbl 
MidiParseByte 
 
/* PLAYER */ 
OpenPlayer 
ClosePlayer 
StartPlayer 
ContPlayer 
StopPlayer 
PausePlayer 
SetRecordModePlayer 



Chameleon Application Developer’s Guide 21 

RecordPlayer 
SetRecordFilterPlayer 
SetPosBBUPlayer 
SetPosMsPlayer 
SetLoopPlayer 
SetLoopStartBBUPlayer 
SetLoopStartMsPlayer 
SetLoopEndMsPlayer 
SetSynchroInPlayer 
SetSynchroOutPlayer 
SetSMPTEOffsetPlayer 
SetTempoPlayer 
GetStatePlayer 
GetEndScorePlayer 
ForwardStepPlayer 
BackwardStepPlayer 
GetAllTrackPlayer 
GetTrackPlayer 
SetTrackPlayer 
SetAllTrackPlayer 
SetParamPlayer 
GetParamPlayer 
InsertAllTrackPlayer 
InsertTrackPlayer 
MidiFileSave 
MidiFileLoad 
MidiFileLoadFromMemory 
 
/* DRIVER MANAGEMENT */ 
MidiRegisterDriver 
MidiUnregisterDriver 
MidiCountDrivers 
MidiGetIndDriver 
MidiGetDriverInfos 
 
/* SLOT MANAGEMENT */ 
MidiAddSlot 
MidiGetIndSlot 
MidiRemoveSlot 
MidiSetSlotName 
MidiGetSlotInfos 
MidiConnectSlot 
MidiIsSlotConnected 
 
/* SMPTE SYNCHRONIZATION */ 
MidiGetSyncInfo 
MidiSetSyncMode 
MidiGetExtTime 
MidiInt2ExtTime 
MidiExt2IntTime 
MidiTime2Smpte 
MidiSmpte2Time 

The functions listed for streams management form an additional library 
called MidiStream which is undocumented in the MidiShare distributed 
documentation. Basically, the MidiStream library is used to convert a 
typical stream of MIDI bytes into MidiShare MIDI events and back. The 
function prototypes for this library are in the files: 

Chameleon.sdk/include/midishare/EventToMidiStream.h  

and  

Chameleon.sdk/include/midishare/MidiStreamToEvent.h. 

The source code of the functions can also be found in the folder: 

Chameleon.sdk/src/lib/midishare/ 



Software Architecture 22

These functions use an internal table to make the conversion and 
therefore before using them it is necessary to initialize the tables by 
calling MidiStreamInitMthTbl and MidiParseInitTypeTbl. The conversion 
status itself is stored in the datatypes Ev2StreamRec and StreamFifo, 
which need to be initialized the first time with the appropiate table. 

The functions MidiFileLoad and MidiFileSave also have to be commented. 
Since no file system is supported currently, both functions will return 
allways error. The function MidiFileLoadFromMemory has to be used to 
simulate MIDI files in memory. 

3.2.33.2.33.2.33.2.3    Chameleon Specific LibrariesChameleon Specific LibrariesChameleon Specific LibrariesChameleon Specific Libraries    

The access and control of all the Chameleon resources is performed 
through the use of specific drivers for each of them, thanks to the facility 
provided by RTEMS for the hardware access by using ioctl calls. 

The Chameleon resources that can be accessed by the programmer by 
means the use of driver are the following: 

!" Front Panel. 

!"DSP. 

!" FLASH Memory. 

!" Information. 

To make the programmer’s work easier, a set of high level routines is 
provided to access these drivers. The using mode of such routines is the 
same for each resource. Before using a resource, its driver has to be 
previously initialized through the call to a init function, which yields a 
handle variable (handler). This handler is used for the subsequent calls to 
the rest of the resource specific functions while it is used. When finally 
this resource is not needed, the handle is freed with a call to a exit 
function. 

The definition of all those functions is in the header file chameleon.h 
together with a set of useful macros. Following subsections describe the 
functionality of each Chameleon drivers. For a complete reference of all 
the functions in this library, please refer to the Chameleon API 
Programmer’s Reference en the documentation. 

3.2.3.13.2.3.13.2.3.13.2.3.1    Panel DriverPanel DriverPanel DriverPanel Driver    

The front panel driver brings to the programmer a set of high level 
functions to access the elements that integrate the Chameleon front 
panel. By making use of these functions, the application routes the input 
of user inputs and shows him information about its current state. Thus, 
these routines allow to wait and process panel events, such as button 
pressings or potentiometer or encoder movements, writing text and 
redefining characters on the LCD display, and turn on/of the LEDs. 



Chameleon Application Developer’s Guide 23 

The following are the available front panel driver functions: 

panel_init 
panel_exit 
panel_out_lcd_clear 
panel_out_lcd_print 
panel_out_lcd_redefine 
panel_out_led 
panel_in_new_event 
panel_in_potentiometer 
panel_in_keypad 
panel_in_encoder 

3.2.3.23.2.3.23.2.3.23.2.3.2    DSP DriverDSP DriverDSP DriverDSP Driver    

The DSP driver gives the access to all the functionality present in the 
connection bus between ColdFire and the DSP (the DSP HI08 interface). 
Initially the application downloads the previously compiled signal 
processing code to the DSP, by making use of the dsp_init function. Once 
this code is running on the DSP, the ColdFire application can exchange 
data with it (commands, parameters, coefficients, etc.) by using the 
provided functions. 

Calls to the DSP driver can block the calling task in a cooperative way 
(other tasks continue running), since the communication with the DSP 
uses interrupt and it is automatically managed by RTEMS. 

The system is prepared for future Chameleon models which could 
incorporate more than one DSP. In fact, to obtain a handle for the DSP 
driver requires to specify a DSP number, which in the current version is 
allways 1. 

ColdFire can send and receive data, to send commands and to read and 
write flags from/to the DSP, and the DSP can send and receive data and 
write and read flags to/from the ColdFire. These possibilities are further 
detailed on Section 3.3.1 dedicated to the DSP HI08 port. 

The available DSP driver functions are: 

dsp_init 
dsp_exit 
dsp_read_data 
dsp_write_data 
dsp_write_command 
dsp_write_flag0 
dsp_write_flag1 
dsp_read_flag2 
dsp_read_flag3 

It’s important to note that the data transfers between the ColdFire and 
the DSP are of 24 bit wide words. Nevertheless, since there is not a data 
type available with such size, the DSP driver functions to read and write 
data (dsp_read_data and dsp_write_data) use the data type 
rtems_signed32 (32 bit signed words) for these transfers, with the useful 
bits right aligned (the 24 LSB), and the most significant byte without a 
valid content. 



Software Architecture 24

3.2.3.33.2.3.33.2.3.33.2.3.3    FLASH Memory DriverFLASH Memory DriverFLASH Memory DriverFLASH Memory Driver    

Applications can use the FLASH memory to store data that must be 
permanently stored, even if the device is turned off, such as 
configuration data, user presets, sound banks, patches, etc. The FLASH 
memory driver simplifies the access to this memory type and manages it 
in a similar way to the DRAM memory. 

If an appliction is running in debug mode (i.e. it is running directly from 
the ColdFire DRAM memory), it won’t be able to actually write data into 
the FLASH memory. Writing will be simulated by using DRAM memory 
instead. This is due to the fact that it is possible that the FLASH memory 
had stored a different application (or a different version of the same 
application that is being debugging), and it would be possible to 
overwrite part of such application so it could result unusable or with 
important user data lost. For that reason, writing in FLASH memory by 
applications running in DRAM memory is disabled, and these only will 
effectively write when running from there2. 

It is posible to query the FLASH memory size available to user data, 
which depends on the size used by the application. It’s not possible to 
write to this memory beyond these limits, and therefore the application 
cannot overwrite itself when it is stored in FLASH. 

Following are the available functions to manage the FLASH memory: 

flash_init 
flash_exit 
flash_read_data 
flash_write_data 
flash_get_size 

3.2.3.43.2.3.43.2.3.43.2.3.4    Information DriverInformation DriverInformation DriverInformation Driver    

Information driver is provided to allow the programmer to consult 
device’s own data such as the serial number and the Chameleon model 
(in prevision to future models). 

The device model identifier allows the application to know the available 
resources (Such as available controls on the front panel, number of DSPs, 
etc. Which can be model-specific) among different models (currently the 
Chameleon model available is only #01).  

The device serial model is merely informative. The protection mechanism 
available to the programmers to prevent not allowable application copies 
to be executed on certain devices is described in Section 4.5 dedicated to 
the Chameleon Toolkit.  

Available functions for the Information driver are: 

                                            
2 Please note that this only affects an application while it is being debugged, and not when it is 
finished and ready to be used. 



Chameleon Application Developer’s Guide 25 

 

info_get_serial_number 
info_get_model 

3.2.3.53.2.3.53.2.3.53.2.3.5    Macros and utility functionsMacros and utility functionsMacros and utility functionsMacros and utility functions    

The Chameleon library includes a set of auxiliary macros and functions 
specially useful to the programmer. 

For the debugging tasks the TRACE and ASSERT macros are available, 
which allow to show messages on the Toolkit’s terminal that informs of 
specific variables value, error conditions and so on. Calls to these macros 
will be compiled only in debug mode. When compiling in release mode 
these calls are ignored. 

Since ColdFire works with 32 bit words and floating point fractional 
arithmetic and the DSP uses 24 bit words fixed point, the appropiate 
conversion functions between both data types are supplied. These 
functions are fix_to_float, float_to_fix and float_to_fix_round. 

Complete reference for these macros and functions can be found on the 
Chameleon API Programmer’s Reference (See documentation index).  

3.2.43.2.43.2.43.2.4    FirmwareFirmwareFirmwareFirmware    

Chameleon uses a boot program stored in ROM that initializes all the 
system’s hardware components and guarantees the device operation 
even when faulty applications are stored in FLASH. 

Thanks to this boot routine, user aplications are unconcerned from any 
system initialization task, and only have to take care of its own 
initialization and execution. DSP is also initialized at boot time, and it 
remains ready for the application to download the specific code on it. 
Thus the DSP has the whole system initialized, and it only has to take 
care of enabling the services that it’s going to use, and perhaps to 
initialize some register with specific values to its demands: audio 
transmission and/or reception on the ESSI0 port, interrupts, DMA and 
communication with the ColdFire through the Host port. 

If during the booting process some harware or software failure is 
detected on the Chameleon, system will notice it to the user with 
appropiate error messages on the LCD display. In case of malfunction on 
the communication with the panel or on the LCD, the error will be 
indicated with a 1 KHz tone on the audio outputs. 

The booting process is very fast, and if there’s some application stored in 
FLASH, it will be executed in a transparent way. 

During the execution of an application on the Chameleon, it is possible to 
download a new one by using the Toolkit application through the RS-232 
debugging port, either to be executed in DRAM (debug mode) or to be 



Software Architecture 26

stored and executed in FLASH. This will be a frequent operation on a 
typical application debugging process. To avoid intermediate filtering on 
the MIDI reception, it’s not possible to perform that operation by making 
use of the MIDI port. To be able to download a new application via the 
MIDI, using a standard MIDI sequencer, it is necessary that the device is 
in waiting mode. 

It is possible to boot the system in waiting mode (without loading the 
applocation stored in FLASH) by turning on the device while maintaining 
the SHIFT key pressed. The device will display the message “Chameleon 
#01   (WAITING)” on the LCD. In this state, system allows writing the 
FLASH memory or running an application in the DRAM memory with the 
information received either on the MIDI port or on the RS-232 interface. 
Furthermore, the user can check the device serial number (by pressing 
the SHIFT key), and the boot subsystems version (by pressing the EDIT 
key). 

It has to be kept in mind that if a buggy or corrupted application is stored 
in FLASH, it can cause the device not to respond after the boot, as 
applications keep the overall system control when executed. If this ever 
happens, the Chameleon boot program will not report any error (since 
the system’s hardware and software are OK), but once the loaded 
application performs some incorrect action, the device will not operate 
properly or simply it will stop operating. When this happens, it is allways 
possible to reboot in waiting mode and then store a correct application. 

3.33.33.33.3    DSPDSPDSPDSP    

When an application starts, the DSP has not any program running on it, 
although its memory and peripherals have been previously initialized by 
the boot program, so they can be directly used by the user code without 
additional programming needed. The application running in the ColdFire 
is the responsible for the DSP code downloading when it’s initializing. 
Once the DSP code is downloaded, the DSP driver on the ColdFire takes 
care to make it execute, so for the programmer “to download the DSP 
code” is equivalent to “execute it”. 

DSP programming can be done without any restriction of any kind in 
terms of registers configuration or memory and peripheral access. 
However, it has to be emphasized that access to the peripheral and 
configuration registers should not be done3, except the ones related to 
the high speed asynchronous serial ESSI0 interface (enable/disable 
transmission and/or reception, DMA or interrupt configuration, or poll its 
status bits) , which acts as the link with the AD/DA converter, and the 
ones related to the HI08 Host port (configure it for interrupts or DMA, 
accept ColdFire commands, poll status bits and read or write flags). Any 
other DSP register different than stated on the following sections and the 

                                            
3 Any other attempt to modify the DSP configuration data apart from these stated is completely  completely  completely  completely  
advisedadvisedadvisedadvised against against against against, and in any case will contribute to improve the device’s operation. 



Chameleon Application Developer’s Guide 27 

general purpose registers (X, Y, A, B, Rx, Mx, Nx), simply can be 
“ignored” with the object of Chameleon programming. 

3.3.13.3.13.3.13.3.1    HI08 Host PortHI08 Host PortHI08 Host PortHI08 Host Port    

The communications between the DSP and the ColdFire are performed 
through the DSP HI08 Host interface. It is an 8 bit wide full-duplex 
parallel port. On the Chameleon, the transferred data types will be 
mostly control data. 

As it was explained in the previous chapter, communication between the 
DSP and the ColdFire on the ColdFire side is handled by making use of the 
specific DSP driver. Thus from the ColdFire point of view, to communicate 
with the DSP results somehow transparent by making use of the 
available high level function calls. 

On the other end, the DSP, handling of such data transfers is slightly 
more complex, as the programming is done at low level. Programmer 
has to determine the transfer data type, among the possible ones, that 
its application is going to need and perform, and so enable the necessary 
Host port resources. Anyway, since the configuration and the involved 
protocol signals are preconfigured beforehand, the resulting HI08 port 
programming model is highly simplified for the Chameleon programmer, 
and it affects exclusively to the way he wants its application to manage 
the data. For him, the Host port simply “already works”. 

The main DSP HI08 port registers that programmers have to kep in mind 
are: 

!"HCR: Host Control Register 

!"HSR: Host Status Register 

!"HTX: Host Transmit Register 

!"HRX: Host Receive Register 

The possible data transfer types form the ColdFire to the DSP are basically 
data, commands and flags: 

!" DataDataDataData: ColdFire sends a given Word number to the DSP, by calling the 
dsp_write_data function. The meaning of such data is completely 
application dependent. For instance, it can be coefficient tables, 
parameter changes due to a certain MIDI or front panel event, sound 
banks, etc. These data are received by DSP on his HRX Host port 
register. DSP can read it by polling, by enabling host data reception 
the interrupt, or by making use of a free Direct Access Memory (DMA) 
channel. These three possibilities are examined further on 
subsequent paragraphs. 

!" Commands: Commands: Commands: Commands: By writing commands on the DSP Host Port, ColdFire can 
force the execution of any of the 128 possible interrupt handling 
routines on the DSP, without having occurred the interrupt signal 



Software Architecture 28

itself. Most frequent utility of such feature resides in the fact that the 
DSP has reserved interrupt vectors (between the program addresses 
$000064 and $0000FE) for application specific routines. It is possible 
to make the DSP to execute particular event responses this way.  

When the ColdFire writes a command to the Host port (calling the 
dsp_write_command), it writes the interrupt vector address (divided 
by two) that wants to execute. For these interrupts to be actually 
executed, DSP has to enable them previously by setting the HCR_HCIE 
bit4 (Host Command Interrupt Enable) on the HCR register.  

For instance, a particular command could indicate to the DSP that 
data previously previously written on the HRX register corresponds to 
the audio output master volume. The interrupt handling routine will 
read this value and will properly update the application. 

!" FlagsFlagsFlagsFlags: The Host status register HSR has two general purpose bits 
(HSR_HF0 and HSR_HF1) which can be written by the ColdFire by 
calling the function dsp_write_flag. The meaning of such bits is 
application dependent and can be used by the ColdFire to signal 
specific information to the DSP. 

The data transfers from the DSP to the ColdFire are similar, but 
commands can not be used, as explained below: 

!" DataDataDataData: DSP cand send Words to the ColdFire by writing it on the Host 
port HTX register. The ColdFire application has to read periodically 
(depending on the expected reception frequency) these data by 
calling the dsp_read_data function. 

!" FlagsFlagsFlagsFlags: The host control register HSR has two general purpose bits 
(HCR_HF2 and HCR_HF3) which can be written by the DSP to signal 
particular application dependent information the the ColdFire. These 
bits can be read by the ColdFire by calling the dsp_read_flag function. 

The data transfers in both directions can be done through on of the 
following possible mechanisms: 

!" PollingPollingPollingPolling: The DSP program periodically consults the host status register 
HSR which contain information about the transmission status. These 
bits are HSR_HRDF (Host Received Data Full), which informs that a 
valid data is received on the HRX register, and HSR_HTDE (Host 
Transmit Data Empty), which informs that the HTX host transmission 
register is empty and a new data can be written to be transmitted. 
This is the simplest method, but also the less efficient. The host port 
flags 0 and 1 only can be chacked by polling. 

!" InterruptsInterruptsInterruptsInterrupts: An interrupt is available for each event on the Host port. 
By enabling the HCR_HRIE bit (Host Receive Interrupt Enable) on the 
Host control register, an interrupt will occur each time a valid data is 

                                            
4 For a complete reference of the used nomenclature for the DSP constants, please refer to the file  
dsp_equ.asm which is placed on the /Chameleon.sdk/include/dsp directory. 
 



Chameleon Application Developer’s Guide 29 

received from the ColdFire on the HRX register. The vector for this 
interrupt is at address P:$000060. 

By enabling the HCR_HTIE (Host Transmit Interrupt Enable) on the HCR 
register, an interrupt will occur each time a data written on the HTX 
register has been effectively transmitted to the ColdFire, so the HTX 
register is empty and a new data to be transmitted can be written on 
it. This interrupt vector is at address P:$000062. 

Finally, by enabling the HCR_HCIE bit (Host Command Interrupt 
Enable) on the HCR register, an interrupt will be triggered each time a 
command from the ColdFire has been written. Interrupt vector then 
depends on the command written by the ColdFire. 

The DSP peripheral associated interrupts have an assignable priority 
level. On the Chameleon, the HI08 Host Port interrupt5 has a default 
binary value of IPL = %01.  

As any other interrupt on the DSP, for the interrupt be actually 
triggered and its handling routine be executed, it has to be masked 
by using the MR_I[0-1] bits on the MR register (MR_I = %11 means to 
enable all the interrupts). 

!" DMA: DMA: DMA: DMA: A Direct Memory Access (DMA) can be used to automatically 
transfer the received or transmitted data from/to previously specified 
memory buffers, without the DSP core intervention. Properly used, 
this technique is the most efficient as it allows data transfers in 
parallel to the normal execution of the code (See Chapter 10 on the 
DSP56300 Family Manual and the Motorola Application Report 
APR/23, Using the DSP56300 Direct Memory Access Controller on the 
Chameleon SDK documentation). 

A detailed description of the HI08 Port can be found in Chapter 6 of the 
DSP56303 User’s Manual. 

3.3.23.3.23.3.23.3.2    ESSI0 PortESSI0 PortESSI0 PortESSI0 Port    

The DSP56303 owns two full-duplex, high speed synchronous serial 
communication ports, named ESSI0 and ESSI1. Only ESSI0 is used on the 
current Chameleon model. 

This port is used on the Chameleon as digital audio input and output, and 
it’s directly connected to the AD/DA converter module. It consists of 
independent transmitter and receiver, which transfer serial data frames 
synchronously with the AD/DA converter. The converter clock guarantees 
the timing precission for each transferred audio sample. The ESSI0 port 
programming model from the Chameleon programmer’s point of view is 
also highly simplified, since all the configuration needed to correctly 
communicate with the AD/DA converter is previously done and it must 

                                            
5 To study the DSP interrupt mechanism in deeper detail, please refer to Section 4.4 in the DSP56303 
User’s Manual provided in the Chameleon SDK Documentation. 



Software Architecture 30

remain unchanged. The only programmer’s concern about that is to 
enable/disable the input and the output, to synchronize left and right 
channels, and finally to define and configure the data transfer mode for 
his application (Polling, interrupts or DMA, in a similar way as it is done 
on the Host port). 

ESSI0 port includes an input serial line and three outputs. From these 
three output lines, only the first (TX00) is used on the Chameleon model 
#01. 

The ESSI0 port registers to have in mind are : 

!" SSISR0: ESSI0 Status Register. 

!" CRB0: ESSI0 Control Register. 

!" TX00: ESSI0 Transmit Data Register 0 

!" RX0: ESSI0 Receive Data Register 

Both audio input and output are stereo. The two input channels (L and R) 
are recived by the ESSI0 on the same receiver module register (RX0) 
from the AD converter, and the two output channels are transferred to 
the DA converter through the same transmitter module register (TX00). 
The data format in both cases is interleaved samples. Internal format of 
each sample received and transmitted on the RX0 and TX00 registers is 
fractional fixed point arithmetic6, so the DSP Arithmetic Logic Unit can 
operate with it.  

Depending on the algorithm, it may be necessary to enable the input, 
the output or both, any combination is possible. Output is 
enabled/disabled by simply writing the CRB0_RE (Receive Enable) bit on 
the CRB0 register, and the output by writing the CRB0_TE0 bit (Transmit 
Enable). 

As the samples of both L and R channels are alternately received on the 
same serial port, it is necessary to know to which channel belongs the 
currently received sample, and the same for the transmitted samples. For 
that the AD/DA generates a synchrony signal to indicate which channel is 
currently transmitting. This signal is readed by the DSP on the SSISR0_RFS 
(Receive Frame Sync) bit. Usually when the DSP code starts, it will wait 
to read this signal to be synchronized and to know from which channel 
it’s reading. A high value on this bit means that the channel being 
received is the left, and a low value means the right channel. 

The input samples reading is done on the SSISR0_RX0 register and the 
output samples writing on the SSISR_TX00. The mechanism used by the 
DSP to read and write the samples can be one of the following: 

!" PollingPollingPollingPolling: The application main loop takes care to poll the SSISR register 
to know if it has received a new input sample by querying the 

                                            
6 For those readers not familiarized with the fixed point fractional arithmetic, it is recommended to 
read the Motorola Application Report APR3 that can be found on the Chameleon SDK documentation. 



Chameleon Application Developer’s Guide 31 

SSISR_RDF bit (Receive Data Full), or if the transmission register is 
empty and a new processed output sample can be written, by 
querying the SSISR_TDE bit (Transmit Data Empty). This mechanism 
implies to perform processing sample by sample, and probably it is 
the most time consuming option. 

!" InterruptsInterruptsInterruptsInterrupts: The ESSI0 port can be configured to trigger an interrupt 
when a new sample is received on the SSISR0_RX0 or when the 
SSISR0_TX00 register content has been transmitted and it is empty 
and available to write the next output sample. 

To enable the reception interrupt, the CRB0_RIE bit (Receive Interrupt 
Enable) must be enabled, and to enable the transmission interrupt, 
the CRB0_TIE bit (Transmission Interrupt Enable) has to be set. 

It is posible to detect reception and transmisión errors by means of 
the reception and transmission with exception interrupts. This 
interrupts are triggered when the RX0 register has been readed 
whithout having read the previous sample (overrun) and when the 
TX00 register hasn’t been written on the required interval time 
(underrun) respectively. These interrupts are enabled by setting the 
CRB0_REIE bit (Receive Exception Interrupt Enable) and the CRB0_TEIE 
(Transmit Exception Interrupt Enable) on the CRB0 register. 

The ESSI0 Interrupt priority level on the Chameleon is preassigned to 
IPL = %11. 

As any other interrupt on the DSP, the ESSI0 interrupts have to be 
masked by using the MR_I[0-1] bits on the MR register to be actually 
triggered. 

The interrupt processing mechanism is usually more efficient than 
pollin, as the audio input and ouput is handled asynchronously to the 
processing tasks, so the time dedicated to this handling is reduced. 

!" It is posible to enable a DMA channel to perform the transfers 
between the input and ouput registers and previously specified 
memory buffers in parallel to the processing program execution. This 
way the data transfers does not overload the application. This 
mechanism of data transfers can be highly efficient for block 
processing.  

Complete reference for the ESSI0 port can be found at the Chapter 7 of 
the DSP56303 User’s Manual. 

3.3.33.3.33.3.33.3.3    External MemoryExternal MemoryExternal MemoryExternal Memory    

In addition to the 8 KWord SRAM internal memory, DSP has 4 MWord of 
DRAM EDO type external memory mapped on the address range $400000 
- $7FFFFF, completely available to the user application. This memory is 
shared between all the DSP memory spaces, and so the same address 
will be accessed independently of X, Y or P memory is being accessed. 



Software Architecture 32

DRAM memory is structured in 1 KWord pages. Accessing to an address 
inside the same page as the previously accessed address (inpage access) 
requires one waiting state, whereas accessing to an addres in another 
page (offpage) access requires 8 waiting states. 

It is important to keep in mind 7this information when planning the 
application memory map in optimization terms. Frequently accessed code 
and data should be placed on internal memory, and less frequently 
accessed code and data should be placed on the external DRAM memory, 
trying to group related blocks inside the same page.



Chameleon Application Developer’s Guide 33 

4444    Development ToolsDevelopment ToolsDevelopment ToolsDevelopment Tools    

4.14.14.14.1    IntroIntroIntroIntroductionductionductionduction    

All the necessary tools to generate, debug and distribute Chameleon 
executable applications are provided in the Chameleon SDK, thogether 
with quite abundant related documentation. These tools include specific 
applications developed by Soundart and third party utilities. All of them 
are freely distributable. 

The tools that integrate the whole Chameleon SDK: 

!"Motorola Suite56TM DSP Tools 

!"GNU Cross-Platform Compiler Collection 

!" Chameleon Development Environtment CDE 

!" Chameleon Toolkit 

!" Scilab 

The Chameleon SDK can be obtained from www.soundart-hot.com or in 
the CD-ROM supplied with the Chameleon hardware. The latest version of 
the SDK is allways on the website. If you have bought the hardware 
Chameleon then you should check to see if there have been any updates 
to the content. 

Next sections explain the SDK components in detail. 

4.24.24.24.2    Motorola Suite56Motorola Suite56Motorola Suite56Motorola Suite56TMTMTMTM DSP Tools DSP Tools DSP Tools DSP Tools    

The DSP code is compiled and linked by means of the Motorola tools for 
the DSP563XX (Compiler/Linker/Assembler/Librarian). Another utility 
developed by Soundart, cld2header.exe, converts the generated DSP 
executable file (a file with extension *.cld) to a C header file which 
contains a byte array with the binary image of such executable code, so 
it can be included with the C/C++ ColdFire code files to be directly 
downloaded to the DSP by using the dsp_init function. As it has been 
stated, once the code is downloaded it begins to execute at once. 

4 
Chapter 



Development Tools 34

DSP programs are mostly written in the DSP56XXX assembler, and 
preprocessor directives can be used for compilation. The complete DSP 
assembler instruction set reference and guide can be found on Chapters 
12 and 13 of the DSP56000 Family Manual, and in the Motorola DSP 
Assembler Reference Manual. There’s also available the Motorola DSP 
Linker/Librarian Reference Manual and the Suite56TM DSP Tools User’s 
Manual. To write DSP programs in C, the GNU DSP563CCC Optimizing C 
compiler is supplied, together its own User’ Manual. For less experienced 
readers on the Motorola DSPs programming, an introductory tutorial with 
8 exercices is available. All that material is completely available on the 
SDK documentation. 

4.2.14.2.14.2.14.2.1    DSP GUI56300 SimulatorDSP GUI56300 SimulatorDSP GUI56300 SimulatorDSP GUI56300 Simulator    

In the DSP code debugging process, a simulator plays a very important 
role. As the Chameleon hardware is beforehand initialized and 
guaranteed to work properly by the firmware, hardware debugging is not 
so important, and what actually counts is to be able to debug the 
algorithms itself, without having to take care about anything else. 

It is available a useful and complete simulator (GUI56300), developed by 
Motorola for its DSP563XX family, which allows to perform detailed 
simulations of the developed algorithms to check its proper operation, 
and to obtain profiling data to detect performance lacks and optimize the 
code. 

The simulation level is total, and it is posible to simulate peripheral 
events and interrupts. The employed clock cycles on specific code blocks 
can be checked to analyze the optimization results. 

Binary stimulus files can be loaded as the algorithm input, and output 
files can be generated. Thus, Scilab or another mathematical software 
can be used to generate the stimulus files (impulses, audio files, test 
signals, etc) to analyze later the processed results. 

A complete reference is found at the Suite56TM DSP Simulator User’s 
Manual. 

4.34.34.34.3    GNU Compiler CollectionGNU Compiler CollectionGNU Compiler CollectionGNU Compiler Collection    

ColdFire programs are generated by using the GNU Compiler Collection 
Set (www.gnu.org), which include an optimizing C/C++ compiler, a 
ColdFire assembler/linker/librarian, and the Make utility for closs-
platform compilation. These programs run on Windows and generate 
ColdFire code. 

The compilation system uses the Make utility with standard makefiles. 
Header makefiles which can be included by the application own 



Chameleon Application Developer’s Guide 35 

makefiles are supplied, to make the tedious project managing task 
easier. These files are placed on Chameleon.sdk/make7 folder. 

Once the source code is written, the Make utility must be called with the 
appropiate command line parameters to compile and link the source files 
to obtain a ColdFire executable application. The Chameleon Development 
Environment automatically performs this call from its Build menu, but the 
programmer should know several aspects of the Make utility and the 
structure of the makefiles that have to be created for his application to 
be build successfully. 

When an application is generated, several of the libraries described on 
Chapter 3 (RTEMS, MidiShare, Chameleon, etc) and placed on the SDK 
directory structure are used. Search for these libraries is done through 
makefiles which are suitably placed in such structure. Usually the source 
files of the aplication will contain calls to functions of such libraries, apart 
from other user defined header files. Makefiles supplied with the SDK 
take care to appropiately redirection the compilation tools when the 
Make utility is called. However, the application has to include its own 
makefiles, defining certain variables that will instruct the compiler about 
how to perform certain application-specific actions. 

Below the typical application makefiles particularities are explained in 
detail. It’s assumed that these described files include the header 
makefiles supplied with the SDK. Next is an example about several 
ColdFire source code files which are on an arbitrary directory, and the DSP 
souce code files are placed on a subdirectory called “dsp”. 

The directory which contains the ColdFire source files has to contain a 
makefile with a structure similar to the following. All the C, C++ and 
assembler source files in such directory will be compiled, although only 
those required by the application will be finally linked: 

APP    := myappname.elf 
OUTDIR := examples/myapp 
 
include /Chameleon.sdk/make/main.mak 
 
dsp/dsp_code.h:: 
  $(call make, ./dsp) 

The APP variable specifies the ColdFire executable file name to be build, 
which is dirctly downloadable on the Chameleon (ColdFire executable 
files have “.elf” extension). 

The OUTDIR variable specifies the subpath where the compilation output 
results will be stored. By default this subpath is added to the 
/Chameleon.sdk/out/model01/ followed by /debug/ or /release/ 
directory depending on the compilation mode (debug or release, i.e. by 
calling Make with the “debug” or “release” command line). 

                                            
7 The Chameleon SDK installer takes note of the user spcified installation path, so all the subsecuent 
references use a relative path as file searching route. All reference to Chameleon.sdk/ refers to the 
actual SDK installation path. Makefiles use the Unix slash (“/”) to specify directory trees. 



Development Tools 36

The rule that refers to the file mydspcode.h is used to recompile the 
source files by the appropiate tool, and so obtain the header file 
mydspcode.h which contains the DSP code binary image. This file will be 
automatically generated by the cld2header program once all the DSP 
source files placed on the “.\dsp” subfolder are compiled. This rule is 
executed when some ColdFire source file that requires this header file is 
found (usually the file that contains the call to the dsp_init() function). 

Other additional variables which can be specified are: 

EXTRAGOALS: points to further targets to be reached. 

EXTRAOBJS: specifies additional object code file paths that have to be 
linked (e.g. compiled user libraries). 

CCINCLUDES: specifies header file paths included in some source code 
files to be compiled and which are in different folders.  

These two variables are useful to reuse code such as user created C++ 
classes, constant definitions, etc. 

CCDEFINES: allows to define new symbols that will be defined during the 
compilation. 

Next, the /Chameleon.sdk/make/main.mak is included, which is one of 
the supplied makefiles, and which takes the variable values previously 
defined to perform the compilation and linking of the application. This 
makefile instructs the compiler and the linker to search for the system 
libraries, generate dependency lists, etc.  

Finally, another makefile has to be created on the subdirectory where 
the DSP source code resides (in our example “.\dsp”), with a content 
similar to the following: 

DSPAPP :=  myappname.cld 
OUTDIR :=  examples/myapp/dsp 
EXTRAGOALS :=  mydspcode.h 
 
include /Chameleon.sdk/make/maindsp.mak 
 
dsp_code.h : $(DSPAPP) 
  $(call cld2header, dspCode) 

The DSPAPP variable specifies the DSP executable file name to be 
created. The source file used to obtain this file is the one whose name 
coincides with its own, and has the “.asm” estension. 

The OUTDIR variable specifies the subpath where the resulting output 
files will be generated, which is added to the default path 
/Chameleon.sdk/out/model01/ plus /debug/ or /release/ depending 
on the compilation mode (debug or release). For coherence, on this 
example this path is a subdirectory of the ColdFire output files one, as it 
is recommended to proceed usually. 



Chameleon Application Developer’s Guide 37 

EXTRAGOALS: specifies additional targets to reach. In this case it specifies 
the name that must have the header file containing the DSP code binary 
image, which has to be the same to the one specified on the ColdFire 
makefile previously explained.  

The makefile /Chameleon.sdk/make/maindsp.mak has to be included, 
which will take the value of the defined variables to direct the 
compilation of the DSP files. 

Finally, a rule is defined to obtain the file dsp_code.h properly. It tells 
make to call the cld2header utility to generate the header file and allows 
to specify the name of the array in this file which contains the binary 
image of DSP code and which is used by the ColdFire function dsp_init() 
to download this code to the DSP (in the example the array will be 
named dspCode).  

Additionally to these variables, the following can also be specified: 

DSPDEPENDS: specifies dependencies of the DSP source file, so if some of 
the included files is changed, it will be recompiled again. It must be 
noted that if these file names are not assigned to this variable, they will 
NOT be recompiled although they are modified, so these modifications 
won’t be reflected on the final executable. 

To obtain more information about the Make utility, please refer to it’s 
complete and extensive reference on the SDK documentation. 

4.44.44.44.4    Chameleon Development Environment (CDE)Chameleon Development Environment (CDE)Chameleon Development Environment (CDE)Chameleon Development Environment (CDE)    

This utility developed by Soundart consists of a complete integrated 
development environment which allows to generate and compile code 
exclusively for the Chameleon. It’s thinked as the only tool needed to 
develop Chameleon applications. It’s main features include:  

!" Project Oriented 

!"Multidocument graphical interface 

!" Project compiling process integrated support, by calling the 
appropiate tools 

!" Compilation output visualization and direct jump to error and warning 
messages 

!" C/C++, Makefiles and DSP assembler language syntax highlighting 
with bookmarks and multiple undo levels  

!"Advanced search in and between files with regular expresión support 
and direct jump to the results 

!"Use of templates to create files and projects 



Development Tools 38

!"Auxiliary development and user tools calls (Chameleon toolkit, DSP 
simulator, Scilab, Explorer…) 

!"Highly customizable (colors, tools, menus, skins...) 

The use of this application is quite simple and straightforward, as it is a 
Windows application very similar to many of the already existing 
Integrated Development Environments, with the only particularity that 
it’s exclusively designed to manage Chameleon applications. 

4.54.54.54.5    Chameleon ToolkitChameleon ToolkitChameleon ToolkitChameleon Toolkit    

Chameleon Toolkit is the tool that allows download and debug the 
applications. It accesses to the Chameleon through the RS-232 either to 
download applications that will be executed in the DRAM memory 
(debug mode) or to store applications in the FLASH memory (release 
mode). It is also possible to generate standard MIDI files to be used by 
other users, and to encode them so they only can be executed on a 
single specific Chameleon. Furthermore, the Toolkit shows a terminal 
screen during the execution of the applications in DRAM where is 
possible to display messages sent by the application executed in debug 
mode, this way allowing to check the variable states, error messages, 
etc. 

The Toolkit window is shown below (FigureFigureFigureFigure    4444....1111). It is quite simple and 
straightforward. The buttons for Debug, Flash, and MIDI offer various 
ways to load applications on the Chameleon hardware. The Exit button 
closes the Toolkit, while the About button displays version information 
and contact details for Soundart.  



Chameleon Application Developer’s Guide 39 

Figure Figure Figure Figure 4444....1111 
Chameleon Toolkit Window. 

 

The main (white) area of the window acts as a terminal. When the user 
is debugging applications, the Chameleon hardware can send information 
to this window to report the progress of the software, by using the TRACE 
and ASSERT macro calls.    

FigureFigureFigureFigure    4444....2222 shows the dialog presented when clicking on the Debug 
button. It is divided into two panels: the first for the user to enter 
information, and the second to display information about the selected 
application. In the upper panel, the first control allows to select the 
computer serial port to which your Chameleon is connected. By default, 
this is ‘COM 1’. Underneath, user can select an application to load on the 
Chameleon. 



Development Tools 40

Figure Figure Figure Figure 4444....2222    
The Toolkit Debug window 

 

Underneath, user has the option to record a log file where all the 
messages received on the terminal from the Chameleon will be stored. 
Clicking the LogLogLogLog checkbox will allow to specify a file to store the details 
of the transaction. This may be useful when developing a large project or 
when many messages are sent from the application. 

The lower panel is filled with information once an application is selected. 
The Target Serial Number Target Serial Number Target Serial Number Target Serial Number in this dialog will always be ‘Any’. In other 
words, loading an application via the debug interface bypasses any serial 
number checking on the Chameleon hardware. Later we will see how to 
add security features to applications. 

Below is the Application VersionApplication VersionApplication VersionApplication Version. Depending on which mode the loaded 
application was compiled, this may be either ‘Debug’ or ‘Release’. The 
debug version of an application contains the extra TRACE or ASSERT macro 
calls to display information in the Toolkit terminal window while the 
Chameleon is being used.  

Underneath this are some statistics about the application you have 
loaded. Code SizeCode SizeCode SizeCode Size refers to the size of the application being sent to the 
Chameleon. Initialised Data SizeInitialised Data SizeInitialised Data SizeInitialised Data Size refers to variables which are initialised 
with a starting value in the program. Uninitialised Data SizeUninitialised Data SizeUninitialised Data SizeUninitialised Data Size indicates 
how much memory is allocated for static variables. Memory RangeMemory RangeMemory RangeMemory Range 
always starts above 0x400000. 

Finally, an estimate of the time required to download the application to 
the Chameleon from the computer is displayed. 



Chameleon Application Developer’s Guide 41 

The OK OK OK OK and Cancel Cancel Cancel Cancel buttons have their normal functions: OKOKOKOK will go ahead 
and attempt to download the application, while CancelCancelCancelCancel will abort the 
action and return you to the main Toolkit window. 

Clicking OK will clear the Debug window and replace it with a download 
progress indicator. First the Chameleon hardware will be reset, and then 
data is transferred from the computer to the Chameleon. 

Clicking the FLASH button will show the dialog of FigureFigureFigureFigure    4444....3333. It is similar 
to the Debug dialog, but now it is not possible to log to the terminal, as 
no debugging is possible when applications run from FLASH. The portion 
of FLASH memory used and the remaining available to the user are 
displayed, as well as the estimated downloaded time. Clicking OK will 
start the download. Once the code is downloaded, the Toolkit will ask the 
user to confirm the application storage in FLASH. Clicking OK again the 
application will be effectively stored in FLASH. It will take a few seconds, 
and the device should not be turned off during the storing process to 
avoid the data being incompletely stored and have a corrupt application 
stored. 

Figure Figure Figure Figure 4444....3333    

The Toolkit FLASH window 

 

Clicking on the MIDI button will open the dialog showed in FigureFigureFigureFigure    4444....4444. By 
means of this dialog the user can generate a standard MIDI file 
containing his application. Any other user will be able to download this 
MIDI file to the Chameleon by booting it in waiting mode, connecting the 
Chameleon MIDI input to the MIDI output of any sequencer, and playing 
this MIDI file. The application will then be stored permanently in the 
Chameleon. 



Development Tools 42

Figure Figure Figure Figure 4444....4444    

The Toolkit MIDI Window 

 

The application is specified in the “App” labeled box, and the MIDI file to 
generate in the “Midi” box. By checking the Serial Number checkbox will 
allow the user to specify for which Chameleon specific serial number he 
wants to generate the MIDI file. Only valid Chameleon serial numbers are 
allowed. The generated MIDI file will be then only able to execute on the 
Chameleon with that serial number, and it won’t run on any other 
machine. The security mechanism is highly robust and the hardware 
takes care to validate this serial number. Leaving the Serial Number 
checkbox unchecked will generate a MIDI file executable on any 
Chameleon whitout regarding its serial number. 

4.5.14.5.14.5.14.5.1    Hints on Debugging AplicationsHints on Debugging AplicationsHints on Debugging AplicationsHints on Debugging Aplications    

As it has been stated, programmer has available the TRACE and ASSERT 
macros to generate messages that will be displayed on the Toolkit 
terminal window. This is currently the only way to debug the executing 
code. No hardware debug is provided in the current model of the 
Chameleon, athough it could be provided in future models. 

By placing appropiate TRACE and ASSERT messages on the critical parts of 
the ColdFire code, it is possible to know the states of any variable, what 
parts of code were not executed under certain conditions, the cause of 
errors and so on.  

For the DSP code debugging, it is highly recommended the use and 
understanding of the provided simulator, which can be very useful to 
debug and optimize the applications. The DSP hardware debuggers are 
mostly intended to solve system hardware problems when developing a 
new hardware DSP architecture. These problems are not such for a 
Chameleon programmer, as they are solved beforehand and he has not 
to take care of it. A software debugger is allways useful even when a 



Chameleon Application Developer’s Guide 43 

hardware one is available, as there are problems that cannot be 
otherwise addressed, such as consecutive audio input samples capture, 
code profiling, etc.  

It’s also possible to get DSP register values in run time when debugging 
the applications in the Chameleon, by creating a ColdFire task available 
only in debug mode. This specific task can read periodically data from the 
DSP via the host DSP driver. The DSP can write the desired data values in 
the Host port and the ColdFire task can send the received data to the 
Toolkit, which will display them on its terminal screen. As usual, it’s also 
possible that the Toolkit logs these incoming messages in a binary data 
file for further analysis. Once the possible problem is solved, the ColdFire 
debug can simply be turned off and continuate the normal developing 
process. 

4.64.64.64.6    AccesoriesAccesoriesAccesoriesAccesories    

4.6.14.6.14.6.14.6.1    ScilabScilabScilabScilab    

With the needs of a Digital Signal Processing applications developer in 
mind, a complete mathematical software package has been included: 
Scilab8. Developed by the Scilabgroup (INRIA-Rocquencourt, Metalau 
Project and the Cergrene ENPC, www-rocq.inria.fr/scilab), this freely 
distribited program allows to perform high level simulations of the 
algorithms before these are finally implemented in the DSP. It works in a 
similar way (in several aspects even better) to the existing commercial 
mathematical and simulation software packages, such as Matlab, 
Mathcad, etc. The included version is Scilab 2.6, especially recompiled by 
Soundart to be included in the Chameleon SDK, with some minor bugs 
fixed. 

Introductory material and the complete Scilab Reference Manual can be 
found in the SDK documentation. 

4.74.74.74.7    SDK StructureSDK StructureSDK StructureSDK Structure    

The Chameleon SDK installation is divided into four parts to simplify the 
redistribution: 

!" Chameleon Software Development Kit CoreChameleon Software Development Kit CoreChameleon Software Development Kit CoreChameleon Software Development Kit Core Files Files Files Files: It contains the 
Chameleon libraries, the system header files, the Soundart utilities for 
code generation and debugging (Toolkit and CDE), plus sample code. 

                                            
8 The Scilab software is not needed to develop applications for the Chameleon, but it is include as an 
auxiliary tool anyway. 



Development Tools 44

!" Chameleon BinariesChameleon BinariesChameleon BinariesChameleon Binaries: It contains all the GNU and Motorola compilation 
tools.    

!" Chameleon DocumeChameleon DocumeChameleon DocumeChameleon Documentationntationntationntation: Complete documentation for the whole 
Chameleon SDK.    

!" Chameleon SilabChameleon SilabChameleon SilabChameleon Silab: Scilab 2.6 compiled specially for the Chameleon 
SDK.    

It is not possible to install one of these components if it already exists 
another version (same or different) previously installed. The installation 
program will warn to the user in such case and it will allow him to 
uninstall the previous version. 

A full installation of the Chameleon SDK comprises over 3,000 files, so a 
map may be helpful. The following table shows the directory structure 
created after a complete SDK installation and explain the important 
items. 

 

Directory ContentsContentsContentsContents    
Chameleon.sdk Root directory of the Chameleon SDK 
├-bin All binary (executable) files in the SDK are stored here 
│ ├-cde Chameleon Environment Development files 
│ ├-coldfire Coldfire source code compilation tools 
│ ├-dsp56303 DSP source code compilation tools 
│ └-scilab Scilab Program Files 
│  
├-doc Documentation for the Chameleon and SDK components 
│ ├-chameleon The Chameleon specific docs 
│ ├-coldfire The Coldfire docs 
│ ├-dsp The DSP56303 docs 
│ │ ├-appnotes Useful Motorola application notes on DSP 
│ │ └-other Useful background and example documents on DSP 
│ ├-gnu The GNU tools docs 
│ ├-midishare MIDIShare system and the Player sequencer docs 
│ ├-rtems RTEMS docs 
│ └-scilab SciLab docs 
│  
├-include Header files containing Chameleon-specific functions 
│ ├-Chameleon Chameleon hardware drivers 
│ ├-dsp DSP56303 include files 
│ ├-midishare MIDIShare include files 
│ ├-newlib newlib, an optimised version of the C Standard Library 
│ └-rtems RTEMS include files 
│  
├-lib Hardware version-specific library files 
│ └-model01 Libraries specific to Model #01 of the Chameleon 
│   ├-debug Debug-version system functions 
│   └-release Release-version system functions 
│  



Chameleon Application Developer’s Guide 45 

Directory ContentsContentsContentsContents    
├-licenses Legal and licensing information for developers 
│  
├-make Basic makefiles used in all Chameleon applications 
│  
├-out Storage directory for Chameleon executables 
│ └-model01 Executables created for Model 1 of the Chameleon 
│   ├-debug Debug versions  
│   └-release Release versions  
│  
└-src Source code for Chameleon applications 
  └-examples Example source code included in the SDK 

 



Where to Go From Here 46

5555    Where to Go From HereWhere to Go From HereWhere to Go From HereWhere to Go From Here    

Since the reader’s goal is to keep hands on actual programming, it’s 
logical to think on which will be the next step after or while reading this 
guide. Following sections explain how to go deeper into the Chameleon 
step by step. Also, the Appendix A contains the complete SDK 
documentation index to help you to find the needed information at each 
moment. 

5.15.15.15.1    SDK Code ExamplesSDK Code ExamplesSDK Code ExamplesSDK Code Examples    

First thing to do should be to take a closer look at the code examples 
provided in the Chameleon SDK to get a clear idea about the general 
Chameleon programming scheme, how files are structured, how the 
Chameleon resources are handled, how makefiles work and so on. 
Following a small description about each of the currently available 
examples. 

5.1.15.1.15.1.15.1.1    HelloHelloHelloHello    

We begin with the classic introductory program making our machine 
display the words ‘Hello World’. Although this is a simple example, it 
demonstrates the basics of interaction with the operating system and the 
front panel of the Chameleon. 

It is found in the folder Chameleon.sdk/src/examples/hello 

5.1.25.1.25.1.25.1.2    WelcomeWelcomeWelcomeWelcome    

Our second project builds on the first, but is quite a bit more involved. It 
introduces the Info driver, and allows some interaction with the front 
panel. We have already written to the display: now we will respond to 
input. This a simple model for all panel interaction with the Chameleon. 

It is found in the folder Chameleon.sdk/src/examples/welcome 

5 
Chapter 



Chameleon Applications Developer’s Guide 47

5.1.35.1.35.1.35.1.3    ShowpanelShowpanelShowpanelShowpanel    

In this example, we program the Chameleon to flash the front panel LEDs 
in a pattern. Building on the last example, adjusting any front panel 
control will generate a response from the machine. 

The ShowPanel application still focuses on the microcontroller, but is 
considerably more complex. Independent RTEMS processes are 
demonstrated for the first time, and so is the use of real-time operating 
functions. We also examine how to redefine characters for the display, 
and respond to a wider range of front panel events. 

It is found in the folder Chameleon.sdk/src/examples/showpanel 

5.1.45.1.45.1.45.1.4    DspthruDspthruDspthruDspthru    

With this application we have our first interaction with audio on the 
Chameleon (this is why you bought it, right?). As the name implies, this 
program simply reads data from the audio inputs of the Chameleon and 
echoes it back to the outputs, while allowing you to control the volume. 
Obviously, to hear it working you’ll have to connect something to the 
inputs and have the volume above zero. 

This example shows the fundamentals of handling audio I/O in the 
Chameleon,  in several ways: polling, interrupt and DMA. To select one of 
these available  modes, you have to define one of the symbols POLLING 
or INTERRUPT to use the  polling or interrupt method, or if any of them 
are not defined, to use the DMA. It only uses the volume potentiometer 
to adjust the desired volume using a pre-filled table with a variable gain 
from -90 dB to 0 dB. To smooth the abrupt volume changes, a volume 
ramping is implemented in the DSP side. 

It is found in the folder Chameleon.sdk/src/examples/dspthru 

5.1.55.1.55.1.55.1.5    DspmemDspmemDspmemDspmem    

This application shows the basics of interaction with the Chameleon’s 
DSP. The microcontroller boots the DSP, then tests the DSP memory. 
Considerably simpler than ShowPanel, this example demonstrates the 
fundamental process used to pass information back and forth between 
the two processors and how thd DSP accesses its external memory. 

It is found in the folder Chameleon.sdk/src/examples/dspmem 

5.1.65.1.65.1.65.1.6    CfthruCfthruCfthruCfthru    

This example shows how to get audio data from the DSP to the ColdFire 
and back again. It only uses the volume potentiometer to adjust the 
desired volume using a pre-filled table with a variable gain from -90 dB 
to 0 dB. The volume is updated using a timer procedure to interpolate 



Where to Go From Here 48

intermediate  points allowing smoother changes than using directly the 
valued got from the panel when it is received. 

It is found in the folder Chameleon.sdk/src/examples/cfthru 

5.1.75.1.75.1.75.1.7    HostcommandsHostcommandsHostcommandsHostcommands    

The way the ColdFire sends data to the DSP using the DSP Host 
Commands is illustrated in this example. It is based on the dspthru 
example, with some extended functionality. The volume is now 
independent for channels right and left, and one pushbutton is used to 
mute/unmute the audio output. Additionally to the volume 
potentiometer, the “CONTROL 1” potentiometer is used as a “balance” 
control, and the “EDIT” key is used as mute/unmute control. Since 
several commands are sent from the ColdFire to the DSP through the 
same port (the Host port), two different host commands are used to 
allow the DSP to interpret correclty the incoming control data stream. 

It is found in the folder Chameleon.sdk/src/examples/hostcommands 

5.1.85.1.85.1.85.1.8    MidimonMidimonMidimonMidimon    

In this example, the main MidiShare features are used to show how 
incoming MIDI events are handled typically in the Chameleon and sent to 
the Toolkit to be displayed on its terminal in console mode. 

It is found in the folder Chameleon.sdk/src/examples/showpanel 

5.1.95.1.95.1.95.1.9    MonoSynthMonoSynthMonoSynthMonoSynth    

MonoSynth is a complete monophonic synthesizer application for 
Soundart’s Chameleon with two wavetable oscillators, a white noise 
generator, a mixer, a resonant lowpass filter with cutoff envelope 
(ADSR), an amplifier with gain envelope (ADSR ) and two stereo delay 
effect units. 

This example covers practically all aspects necessary to implement a 
typical synthesizer in the Chameleon. Some of the key characteristics are: 

!"Use of a modular-like DSP processing framework. 

!" Included DSP code implementing generic blocks of frequently used 
modules: oscillators, filter, vca, envelopes, delay lines… 

!" Fast ColdFire to DSP, interrupt based, generic communication 
framework. 

!"DSP simulator/profiling support code (using conditional assembly 
directives). 



Chameleon Applications Developer’s Guide 49

!" Realtime computation of DSP parameters in the ColdFire using 
standard floating point functions in C. 

!" Realtime processing of incoming MIDI data, supporting NoteOn, 
NoteOff, PitchBend, Controllers, ProgramChange and SysEx messages. 

!" Realtime generation of MIDI controller data using the panel knobs. 

!" Programmable MIDI-thru-merge engine (MIDI input messages routed 
to MIDI output in realtime together with the internal generated 
ones). 

!"MIDIFile sequencer used to play the included demo song. 

!" Easily extendable menu based panel operation framework. 

!" Possibility of assigment of the panel knobs to any defined parameter. 

!"Use of user flash memory to store until 128 sound presets and non 
volatile configuration data (MIDI device ID, receive MIDI channel, …) 

!" Implementation of typical preset dump and request MIDI system 
exclusive messages. 

!"Use of object oriented C++ classes in the ColdFire side to make easy 
the addition of new features, and to promote the reuse of commonly 
used code. 

!"Multitasking, object oriented, message-queue and priority based 
implementation of the different conceptual elements involved.  

!" Fast access to catalogued parameters by ID using a database-like 
parameter container (using a fast hash table). 

!" Easy to change mapping tables to assign MIDI controllers to internal 
parameters. 

It is found in the folder Chameleon.sdk/src/examples/monosynth 

5.25.25.25.2    TutorialsTutorialsTutorialsTutorials    

5.2.15.2.15.2.15.2.1    DSP Introductory TutorialsDSP Introductory TutorialsDSP Introductory TutorialsDSP Introductory Tutorials    

For those which are not experienced with the Motorola DSPs or with the 
DSP programming in general, there is an excellent set of tutorials made 
by Motorola to get hands on on the DSP56300 programming. It comprises 
8 exercices which illustrate the DSP addressing modes, implementing FIR 
filters, advanced use of the Arithmentic Logic Unit and advanced 
instructions, all with source code included. This tutorial can be found in 



Where to Go From Here 50

the Chameleon.sdk/doc/dsp/other and it is compressed by the files 
Onyxlabs.pdf and labscode.zip . 

5.2.25.2.25.2.25.2.2    An audio level meter for the ChameleonAn audio level meter for the ChameleonAn audio level meter for the ChameleonAn audio level meter for the Chameleon    

On this tutorial you will convert the Chameleon into a simple audio level 
meter. Although this tutorial comes together with the rest of supplied 
sample code, it also comprises a step by step tutorial, from the algorithm 
design with the help of Scilab, to the DSP simulation and final 
implementation and debugging on the harware. It is found on the folder 
Chameleon.sdk/src/examples/levelmeter 



Chameleon Applications Developer’s Guide 51

AAAA    SDSDSDSDK Documentation IndexK Documentation IndexK Documentation IndexK Documentation Index    

Following is the complete index for the documentation that can be found 
in the Chameleon SDK. All the files in the Chameleo.sdk/doc directory are 
listed in the following table: 

 

File ContentsContentsContentsContents    
doc  
│  
├-chameleon  
│ ├-STD001.pdf 
│ │ 

Chameleon Applications Programmer’s Guide 
(This Document) 

│ ├-STD002.pdf Chameleon API Programmer’s Reference 
│ └-Chameleon Overview.pdf Brief Introduction to the Chameleon 
│  
├-coldfire Scilab Program Files 
│ ├-5206e_um.pdf ColdFire User’s Manual 
│ └-cfref_man ColdFire Programmer’s Reference Manual 
│  
├-dsp  
│ ├-DSP56300FM.pdf DSP56300 Family Manual 
│ ├-DSP56303UM.pdf DSP56303 User’s Manual 
│ ├-DSP563CCC.pdf DSP C Compiler Manual 
│ ├-DSPASMRM.pdf DSP Assembler Reference Manual 
│ ├-DSPLINKRM.pdf DSP Linker Reference Manual 
│ ├-DSP56SIMUM.pdf DSP Simulator User’s Manual 
│ ├-DSPS56TOOLSUM.pdf Motorola Suite56TM Tools User Manual 
│ ├-appnotes Several Motorola DSP Application Notes 
│ └-other  
│   ├-alpha_inst_ref.pdf  
│   │ 

Assembler instruction set for the DSP56300 
Family, grouped by name 

│   ├-dct.pdf 8x8 DCT Algorithm on Motorola DSP56300 
│   ├-DrBob563.zip Code examples for the DSP5630X 
│   ├-Instr-Ref2.pdf 
│   │ 

Assembler instruction set for the DSP56300 
Family, grouped by function 

│   ├-labscode.zip 
│   │ 

Code for the Onyxlabs.pdf tutorial 

│   └-Onyxlabs.pdf Several introduction tutorials for the DSP56300 
│  
├-gnu  
│ ├-as.pdf GNU Assembler Manual 
│ ├-bdf.pdf Binary File Descriptor Library 

A 
Appendix 



SDK Documentation Index 52

File ContentsContentsContentsContents    
│ ├-binutils.pdf GNU Binary Utilities 
│ ├-cpp.pdf GNU C Preprocessor Manual 
│ ├-gasp.pdf GNU Assembly Preprocessor Manual 
│ ├-gcc.pdf GNU Compiler Collection Manual 
│ ├-ld.pdf GNU Linker Manual 
│ ├-libc.pdf Cygnus C Support Library Reference 
│ ├-libm.pdf Cygnus Math Library Reference 
│ └-make.pdf GNU Make Manual 
│  
├-midishare  
│ ├-MidiShare.pdf MidiShare Developer Documentation 
│ └-Player2.0.pdf MidiShare Player reference Library 
│  
├-rtems  
│ └-c_user.pdf RTEMS C User’s Guide 
│  
└-scilab  
  ├-intro.pdf Introduction to Scilab 
  ├-manual.pdf Scilab Reference Manual 
  └-signal.pdf Signal Processing with Scilab 



Chameleon Applications Developer’s Guide 53

BBBB    MIDI Implementation ChartMIDI Implementation ChartMIDI Implementation ChartMIDI Implementation Chart    

FunctionFunctionFunctionFunction    TransmittedTransmittedTransmittedTransmitted    RecognizedRecognizedRecognizedRecognized    RemarksRemarksRemarksRemarks    

Basic Channel 
Default 
Changed 

 
depends1 

1-16 

 
depends1    

1-16 

 
See Notes 

Mode    
Default 
Messages 
Altered 

 
depends1    

o 
o 

 
depends1    

o 
o 

 
See Notes 

Note Number    0-127 0-127 See Notes 

Velocity    
Note ON 
Note OFF 

 
0-127 
0-127 

 
0-127 
0-127 

 
See Notes 

After Touch    
Key 
Channel 

 
o 
o 

 
o 
o 

 
See Notes 

Pitch Bender    o o See Notes 

Control Change    0-127, value 0-127 0-127, value 0-127 See Notes 

Program Change    0-127 0-127 See Notes 

System Exclusive    o o See Notes 

System Common    
Song Position 
Song Select 
Tune Request    

 
o 
o 
o 

 
o 
o 
o 

 
See Notes 

System Real Time    
Clock 
Commands    

 
o 
o 

 
o 
o 

 
See Notes 

Aux. Messages    
Local ON/OFF 
All Notes OFF 
Active Sensing 
Reset 

 
o 
o 
o 
o 

 
o 
o 
o 
o 

 
 

See Notes 

Notes    
Chameleon is a fully programmable device and therefore it is capable of receiving and transmiting any type of 
MIDI data, at the sole discretion of the developer. 

depends1: The application running in the Chameleon is responsible of setting the default value. 

 

Mode 1: OMNI ON, POLY Mode 2: OMNI ON, MONO o : Yes 
Mode 3: OMNI OFF, POLY Mode 4: OMNI OFF, MONO x : No 

B 
Appendix 


