
The Cygnus C Support Library
Full Configuration

libc 1.4
May 1993

Steve Chamberlain
Roland Pesch
Cygnus Support

sac@cygnus.com, pesch@cygnus.com The Cygnus C Support Library
Copyright c© 1992, 1993 Cygnus Support
‘libc’ includes software developed by the University of California, Berkeley and its contrib-
utors.
‘libc’ includes software developed by Martin Jackson, Graham Haley and Steve Chamber-
lain of Tadpole Technology and released to Cygnus.
‘libc’ uses floating point converstion software developed at AT&T, which includes this
copyright information:� �
The author of this software is David M. Gay.
Copyright (c) 1991 by AT&T.
Permission to use, copy, modify, and distribute this software for any purpose without fee
is hereby granted, provided that this entire notice is included in all copies of any software
which is or includes a copy or modification of this software and in all copies of the supporting
documentation for such software.
THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T
MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING
THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PAR-
TICULAR PURPOSE.
 	

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, subject to the terms of the GNU General Public License,
which includes the provision that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 1

1 Standard Utility Functions (‘stdlib.h’)

This chapter groups utility functions useful in a variety of programs. The corresponding
declarations are in the header file ‘stdlib.h’.

2 Cygnus C Support Library, Full

1.1 abort—abnormal termination of a program

Synopsis
#include <stdlib.h>
void abort(void);

Description
Use abort to signal that your program has detected a condition it cannot deal with. Nor-
mally, abort ends your program’s execution.
Before terminating your program, abort raises the exception SIGABRT (using
‘raise(SIGABRT)’). If you have used signal to register an exception handler for this
condition, that handler has the opportunity to retain control, thereby avoiding program
termination.
In this implementation, abort does not perform any stream- or file-related cleanup (the
host environment may do so; if not, you can arrange for your program to do its own cleanup
with a SIGABRT exception handler).

Returns
abort does not return to its caller.

Portability
ANSI C requires abort.
Supporting OS subroutines required: getpid, kill.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 3

1.2 abs—integer absolute value (magnitude)

Synopsis
#include <stdlib.h>
int abs(int i);

Description
abs returns |x|, the absolute value of i (also called the magnitude of i). That is, if i is
negative, the result is the opposite of i, but if i is nonnegative the result is i.
The similar function labs uses and returns long rather than int values.

Returns
The result is a nonnegative integer.

Portability
abs is ANSI.
No supporting OS subroutines are required.

4 Cygnus C Support Library, Full

1.3 assert—Macro for Debugging Diagnostics

Synopsis
#include <assert.h>
void assert(int expression);

Description
Use this macro to embed debuggging diagnostic statements in your programs. The argument
expression should be an expression which evaluates to true (nonzero) when your program
is working as you intended.
When expression evaluates to false (zero), assert calls abort, after first printing a message
showing what failed and where:

Assertion failed: expression, file filename, line lineno

The macro is defined to permit you to turn off all uses of assert at compile time by defining
NDEBUG as a preprocessor variable. If you do this, the assert macro expands to

(void(0))

Returns
assert does not return a value.

Portability
The assert macro is required by ANSI, as is the behavior when NDEBUG is defined.
Supporting OS subroutines required (only if enabled): close, fstat, getpid, isatty, kill,
lseek, read, sbrk, write.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 5

1.4 atexit—request execution of functions at program exit

Synopsis
#include <stdlib.h>
int atexit (void (*function)(void));

Description
You can use atexit to enroll functions in a list of functions that will be called when your
program terminates normally. The argument is a pointer to a user-defined function (which
must not require arguments and must not return a result).
The functions are kept in a LIFO stack; that is, the last function enrolled by atexit will
be the first to execute when your program exits.
There is no built-in limit to the number of functions you can enroll in this list; however,
after every group of 32 functions is enrolled, atexit will call malloc to get space for the
next part of the list. The initial list of 32 functions is statically allocated, so you can always
count on at least that many slots available.

Returns
atexit returns 0 if it succeeds in enrolling your function, -1 if it fails (possible only if no
space was available for malloc to extend the list of functions).

Portability
atexit is required by the ANSI standard, which also specifies that implementations must
support enrolling at least 32 functions.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

6 Cygnus C Support Library, Full

1.5 atof, atoff—string to double or float

Synopsis
#include <stdlib.h>
double atof(const char *s);
float atoff(const char *s);

Description
atof converts the initial portion of a string to a double. atoff converts the initial portion
of a string to a float.
The functions parse the character string s, locating a substring which can be converted to
a floating point value. The substring must match the format:

[+|-]digits[.][digits][(e|E)[+|-]digits]

The substring converted is the longest initial fragment of s that has the expected format,
beginning with the first non-whitespace character. The substring is empty if str is empty,
consists entirely of whitespace, or if the first non-whitespace character is something other
than +, -, ., or a digit.
atof(s) is implemented as strtod(s, NULL). atoff(s) is implemented as strtodf(s,
NULL).

Returns
atof returns the converted substring value, if any, as a double; or 0.0, if no conversion
could be performed. If the correct value is out of the range of representable values, plus
or minus HUGE_VAL is returned, and ERANGE is stored in errno. If the correct value would
cause underflow, 0.0 is returned and ERANGE is stored in errno.
atoff obeys the same rules as atof, except that it returns a float.

Portability
atof is ANSI C. atof, atoi, and atol are subsumed by strod and strol, but are used
extensively in existing code. These functions are less reliable, but may be faster if the
argument is verified to be in a valid range.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 7

1.6 atoi, atol—string to integer

Synopsis
#include <stdlib.h>
int atoi(const char *s);
long atol(const char *s);

Description
atoi converts the initial portion of a string to an int. atol converts the initial portion of
a string to a long.
atoi(s) is implemented as (int)strtol(s, NULL, 10). atol(s) is implemented as
strtol(s, NULL, 10).

Returns
The functions return the converted value, if any. If no conversion was made, 0 is returned.

Portability
atoi is ANSI.
No supporting OS subroutines are required.

8 Cygnus C Support Library, Full

1.7 bsearch—binary search

Synopsis
#include <stdlib.h>
void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

Description
bsearch searches an array beginning at base for any element that matches key, using binary
search. nmemb is the element count of the array; size is the size of each element.
The array must be sorted in ascending order with respect to the comparison function compar
(which you supply as the last argument of bsearch).
You must define the comparison function (*compar) to have two arguments; its result must
be negative if the first argument is less than the second, zero if the two arguments match,
and positive if the first argument is greater than the second (where “less than” and “greater
than” refer to whatever arbitrary ordering is appropriate).

Returns
Returns a pointer to an element of array that matches key. If more than one matching
element is available, the result may point to any of them.

Portability
bsearch is ANSI.
No supporting OS subroutines are required.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 9

1.8 calloc—allocate space for arrays

Synopsis
#include <stdlib.h>
void *calloc(size_t n, size_t s);
void *calloc_r(void *reent, size_t <n>, <size_t> s);

Description
Use calloc to request a block of memory sufficient to hold an array of n elements, each of
which has size s.
The memory allocated by calloc comes out of the same memory pool used by malloc, but
the memory block is initialized to all zero bytes. (To avoid the overhead of initializing the
space, use malloc instead.)
The alternate function _calloc_r is reentrant. The extra argument reent is a pointer to a
reentrancy structure.

Returns
If successful, a pointer to the newly allocated space.
If unsuccessful, NULL.

Portability
calloc is ANSI.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

10 Cygnus C Support Library, Full

1.9 div—divide two integers

Synopsis
#include <stdlib.h>
div_t div(int n, int d);

Description
Divide n/d, returning quotient and remainder as two integers in a structure div_t.

Returns
The result is represented with the structure

typedef struct
{
int quot;
int rem;
} div_t;

where the quot field represents the quotient, and rem the remainder. For nonzero d, if ‘r =
div(n,d);’ then n equals ‘r.rem + d*r.quot’.
To divide long rather than int values, use the similar function ldiv.

Portability
div is ANSI.
No supporting OS subroutines are required.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 11

1.10 ecvt,ecvtf,fcvt,fcvtf—double or float to string

Synopsis
#include <stdlib.h>

char *ecvt(double val, int chars, int *decpt, int *sgn);
char *ecvtf(float val, int chars, int *decpt, int *sgn);

char *fcvt(double val, int decimals,
int *decpt, int *sgn);

char *fcvtf(float val, int decimals,
int *decpt, int *sgn);

Description
ecvt and fcvt produce (null-terminated) strings of digits representating the double num-
ber val. ecvtf and fcvtf produce the corresponding character representations of float
numbers.
(The stdlib functions ecvtbuf and fcvtbuf are reentrant versions of ecvt and fcvt.)
The only difference between ecvt and fcvt is the interpretation of the second argument
(chars or decimals). For ecvt, the second argument chars specifies the total number of
characters to write (which is also the number of significant digits in the formatted string,
since these two functions write only digits). For fcvt, the second argument decimals speci-
fies the number of characters to write after the decimal point; all digits for the integer part
of val are always included.
Since ecvt and fcvt write only digits in the output string, they record the location of the
decimal point in *decpt, and the sign of the number in *sgn. After formatting a number,
*decpt contains the number of digits to the left of the decimal point. *sgn contains 0 if the
number is positive, and 1 if it is negative.

Returns
All four functions return a pointer to the new string containing a character representation
of val.

Portability
None of these functions are ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

12 Cygnus C Support Library, Full

1.11 gvcvt, gcvtf—format double or float as string

Synopsis
#include <stdlib.h>

char *gcvt(double val, int precision, char *buf);
char *gcvtf(float val, int precision, char *buf);

Description
gcvt writes a fully formatted number as a null-terminated string in the buffer *buf . gdvtf
produces corresponding character representations of float numbers.
gcvt uses the same rules as the printf format ‘%.precisiong’—only negative values are
signed (with ‘-’), and either exponential or ordinary decimal-fraction format is chosen de-
pending on the number of significant digits (specified by precision).

Returns
The result is a pointer to the formatted representation of val (the same as the argument
buf).

Portability
Neither function is ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 13

1.12 ecvtbuf, fcvtbuf—double or float to string

Synopsis
#include <stdio.h>

char *ecvtbuf(double val, int chars, int *decpt,
int *sgn, char *buf);

char *fcvtbuf(double val, int decimals, int *decpt,
int *sgn, char *buf);

Description
ecvtbuf and fcvtbuf produce (null-terminated) strings of digits representating the double
number val.
The only difference between ecvtbuf and fcvtbuf is the interpretation of the second ar-
gument (chars or decimals). For ecvtbuf, the second argument chars specifies the total
number of characters to write (which is also the number of significant digits in the format-
ted string, since these two functions write only digits). For fcvtbuf, the second argument
decimals specifies the number of characters to write after the decimal point; all digits for
the integer part of val are always included.
Since ecvtbuf and fcvtbuf write only digits in the output string, they record the location of
the decimal point in *decpt, and the sign of the number in *sgn. After formatting a number,
*decpt contains the number of digits to the left of the decimal point. *sgn contains 0 if the
number is positive, and 1 if it is negative. For both functions, you supply a pointer buf to
an area of memory to hold the converted string.

Returns
Both functions return a pointer to buf, the string containing a character representation of
val.

Portability
Neither function is ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

14 Cygnus C Support Library, Full

1.13 __env_lock, __env_unlock–lock environ variable

Synopsis
#include "envlock.h"
void __env_lock (void *reent);
void __env_unlock (void *reent);

Description
The setenv family of routines call these functions when they need to modify the environ
variable. The version of these routines supplied in the library does not do anything. If
multiple threads of execution can call setenv, or if setenv can be called reentrantly, then
you need to define your own versions of these functions in order to safely lock the memory
pool during a call. If you do not, the memory pool may become corrupted.
A call to setenv may call __env_lock recursively; that is, the sequence of calls may go
__env_lock, __env_lock, __env_unlock, __env_unlock. Any implementation of these
routines must be careful to avoid causing a thread to wait for a lock that it already holds.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 15

1.14 exit—end program execution

Synopsis
#include <stdlib.h>
void exit(int code);

Description
Use exit to return control from a program to the host operating environment. Use the
argument code to pass an exit status to the operating environment: two particular values,
EXIT_SUCCESS and EXIT_FAILURE, are defined in ‘stdlib.h’ to indicate success or failure
in a portable fashion.
exit does two kinds of cleanup before ending execution of your program. First, it calls
all application-defined cleanup functions you have enrolled with atexit. Second, files and
streams are cleaned up: any pending output is delivered to the host system, each open file
or stream is closed, and files created by tmpfile are deleted.

Returns
exit does not return to its caller.

Portability
ANSI C requires exit, and specifies that EXIT_SUCCESS and EXIT_FAILURE must be defined.
Supporting OS subroutines required: _exit.

16 Cygnus C Support Library, Full

1.15 getenv—look up environment variable

Synopsis
#include <stdlib.h>
char *getenv(const char *name);

Description
getenv searches the list of environment variable names and values (using the global pointer
‘char **environ’) for a variable whose name matches the string at name. If a variable
name matches, getenv returns a pointer to the associated value.

Returns
A pointer to the (string) value of the environment variable, or NULL if there is no such
environment variable.

Portability
getenv is ANSI, but the rules for properly forming names of environment variables vary
from one system to another.
getenv requires a global pointer environ.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 17

1.16 labs—long integer absolute value

Synopsis
#include <stdlib.h>
long labs(long i);

Description
labs returns |x|, the absolute value of i (also called the magnitude of i). That is, if i is
negative, the result is the opposite of i, but if i is nonnegative the result is i.
The similar function abs uses and returns int rather than long values.

Returns
The result is a nonnegative long integer.

Portability
labs is ANSI.
No supporting OS subroutine calls are required.

18 Cygnus C Support Library, Full

1.17 ldiv—divide two long integers

Synopsis
#include <stdlib.h>
ldiv_t ldiv(long n, long d);

Description
Divide n/d, returning quotient and remainder as two long integers in a structure ldiv_t.

Returns
The result is represented with the structure

typedef struct
{
long quot;
long rem;

} ldiv_t;

where the quot field represents the quotient, and rem the remainder. For nonzero d, if ‘r =
ldiv(n,d);’ then n equals ‘r.rem + d*r.quot’.
To divide int rather than long values, use the similar function div.

Portability
ldiv is ANSI.
No supporting OS subroutines are required.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 19

1.18 malloc, realloc, free—manage memory

Synopsis
#include <stdlib.h>
void *malloc(size_t nbytes);
void *realloc(void *aptr, size_t nbytes);
void free(void *aptr);

void *memalign(size_t align, size_t nbytes);

size_t malloc_usable_size(void *aptr);

void *_malloc_r(void *reent, size_t nbytes);
void *_realloc_r(void *reent,

void *aptr, size_t nbytes);
void _free_r(void *reent, void *aptr);

void *_memalign_r(void *reent,
size_t align, size_t nbytes);

size_t _malloc_usable_size_r(void *reent, void *aptr);

Description
These functions manage a pool of system memory.
Use malloc to request allocation of an object with at least nbytes bytes of storage available.
If the space is available, malloc returns a pointer to a newly allocated block as its result.
If you already have a block of storage allocated by malloc, but you no longer need all the
space allocated to it, you can make it smaller by calling realloc with both the object
pointer and the new desired size as arguments. realloc guarantees that the contents of
the smaller object match the beginning of the original object.
Similarly, if you need more space for an object, use realloc to request the larger size; again,
realloc guarantees that the beginning of the new, larger object matches the contents of
the original object.
When you no longer need an object originally allocated by malloc or realloc (or the
related function calloc), return it to the memory storage pool by calling free with the
address of the object as the argument. You can also use realloc for this purpose by calling
it with 0 as the nbytes argument.
The memalign function returns a block of size nbytes aligned to a align boundary. The
align argument must be a power of two.
The malloc_usable_size function takes a pointer to a block allocated by malloc. It
returns the amount of space that is available in the block. This may or may not be more
than the size requested from malloc, due to alignment or minimum size constraints.
The alternate functions _malloc_r, _realloc_r, _free_r, _memalign_r, and _malloc_
usable_size_r are reentrant versions. The extra argument reent is a pointer to a reen-
trancy structure.
If you have multiple threads of execution which may call any of these routines, or if any
of these routines may be called reentrantly, then you must provide implementations of the

20 Cygnus C Support Library, Full

__malloc_lock and __malloc_unlock functions for your system. See the documentation
for those functions.
These functions operate by calling the function _sbrk_r or sbrk, which allocates space.
You may need to provide one of these functions for your system. _sbrk_r is called with
a positive value to allocate more space, and with a negative value to release previously
allocated space if it is no longer required. See Section 10.1 [Stubs], page 159.

Returns
malloc returns a pointer to the newly allocated space, if successful; otherwise it returns
NULL. If your application needs to generate empty objects, you may use malloc(0) for this
purpose.
realloc returns a pointer to the new block of memory, or NULL if a new block could not be
allocated. NULL is also the result when you use ‘realloc(aptr,0)’ (which has the same effect
as ‘free(aptr)’). You should always check the result of realloc; successful reallocation is
not guaranteed even when you request a smaller object.
free does not return a result.
memalign returns a pointer to the newly allocated space.
malloc_usable_size returns the usable size.

Portability
malloc, realloc, and free are specified by the ANSI C standard, but other conforming
implementations of malloc may behave differently when nbytes is zero.
memalign is part of SVR4.
malloc_usable_size is not portable.
Supporting OS subroutines required: sbrk.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 21

1.19 mallinfo, malloc_stats, mallopt–malloc support

Synopsis
#include <malloc.h>
struct mallinfo mallinfo(void);
void malloc_stats(void);
int mallopt(int parameter, value);

struct mallinfo _mallinfo_r(void *reent);
void _malloc_stats_r(void *reent);
int _mallopt_r(void *reent, int parameter, value);

Description
mallinfo returns a structure describing the current state of memory allocation. The struc-
ture is defined in malloc.h. The following fields are defined: arena is the total amount of
space in the heap; ordblks is the number of chunks which are not in use; uordblks is the
total amount of space allocated by malloc; fordblks is the total amount of space not in
use; keepcost is the size of the top most memory block.
malloc_stats print some statistics about memory allocation on standard error.
mallopt takes a parameter and a value. The parameters are defined in malloc.h, and may
be one of the following: M_TRIM_THRESHOLD sets the maximum amount of unused space in
the top most block before releasing it back to the system in free (the space is released by
calling _sbrk_r with a negative argument); M_TOP_PAD is the amount of padding to allocate
whenever _sbrk_r is called to allocate more space.
The alternate functions _mallinfo_r, _malloc_stats_r, and _mallopt_r are reentrant
versions. The extra argument reent is a pointer to a reentrancy structure.

Returns
mallinfo returns a mallinfo structure. The structure is defined in malloc.h.
malloc_stats does not return a result.
mallopt returns zero if the parameter could not be set, or non-zero if it could be set.

Portability
mallinfo and mallopt are provided by SVR4, but mallopt takes different parameters on
different systems. malloc_stats is not portable.

22 Cygnus C Support Library, Full

1.20 __malloc_lock, __malloc_unlock–lock malloc pool

Synopsis
#include <malloc.h>
void __malloc_lock (void *reent);
void __malloc_unlock (void *reent);

Description
The malloc family of routines call these functions when they need to lock the memory
pool. The version of these routines supplied in the library does not do anything. If multiple
threads of execution can call malloc, or if malloc can be called reentrantly, then you need
to define your own versions of these functions in order to safely lock the memory pool during
a call. If you do not, the memory pool may become corrupted.
A call to malloc may call __malloc_lock recursively; that is, the sequence of calls may go __
malloc_lock, __malloc_lock, __malloc_unlock, __malloc_unlock. Any implementation
of these routines must be careful to avoid causing a thread to wait for a lock that it already
holds.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 23

1.21 mblen—minimal multibyte length function

Synopsis
#include <stdlib.h>
int mblen(const char *s, size_t n);

Description
When MB CAPABLE is not defined, this is a minimal ANSI-conforming implementation of
mblen. In this case, the only “multi-byte character sequences” recognized are single bytes,
and thus 1 is returned unless s is the null pointer or has a length of 0 or is the empty string.
When MB CAPABLE is defined, this routine calls _mbtowc_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns
This implementation of mblen returns 0 if s is NULL or the empty string; it returns 1 if not
MB CAPABLE or the character is a single-byte character; it returns -1 if the multi-byte
character is invalid; otherwise it returns the number of bytes in the multibyte character.

Portability
mblen is required in the ANSI C standard. However, the precise effects vary with the locale.
mblen requires no supporting OS subroutines.

24 Cygnus C Support Library, Full

1.22 mbstowcs—minimal multibyte string to wide char
converter

Synopsis
#include <stdlib.h>
int mbstowcs(wchar_t *pwc, const char *s, size_t n);

Description
When MB CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of mbstowcs. In this case, the only “multi-byte character sequences” recognized are single
bytes, and they are “converted” to wide-char versions simply by byte extension.
When MB CAPABLE is defined, this routine calls _mbstowcs_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns
This implementation of mbstowcs returns 0 if s is NULL or is the empty string; it returns -1
if MB CAPABLE and one of the multi-byte characters is invalid or incomplete; otherwise it
returns the minimum of: n or the number of multi-byte characters in s plus 1 (to compensate
for the nul character). If the return value is -1, the state of the pwc string is indeterminate.
If the input has a length of 0, the output string will be modified to contain a wchar t nul
terminator.

Portability
mbstowcs is required in the ANSI C standard. However, the precise effects vary with the
locale.
mbstowcs requires no supporting OS subroutines.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 25

1.23 mbtowc—minimal multibyte to wide char converter

Synopsis
#include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *s, size_t n);

Description
When MB CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of mbtowc. In this case, only “multi-byte character sequences” recognized are single bytes,
and they are “converted” to themselves. Each call to mbtowc copies one character from *s
to *pwc, unless s is a null pointer. The argument n is ignored.
When MB CAPABLE is defined, this routine calls _mbtowc_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns
This implementation of mbtowc returns 0 if s is NULL or is the empty string; it returns 1 if
not MB CAPABLE or the character is a single-byte character; it returns -1 if n is 0 or the
multi-byte character is invalid; otherwise it returns the number of bytes in the multibyte
character. If the return value is -1, no changes are made to the pwc output string. If the
input is the empty string, a wchar t nul is placed in the output string and 0 is returned. If
the input has a length of 0, no changes are made to the pwc output string.

Portability
mbtowc is required in the ANSI C standard. However, the precise effects vary with the
locale.
mbtowc requires no supporting OS subroutines.

26 Cygnus C Support Library, Full

1.24 qsort—sort an array

Synopsis
#include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

Description
qsort sorts an array (beginning at base) of nmemb objects. size describes the size of each
element of the array.
You must supply a pointer to a comparison function, using the argument shown as compar.
(This permits sorting objects of unknown properties.) Define the comparison function to
accept two arguments, each a pointer to an element of the array starting at base. The result
of (*compar) must be negative if the first argument is less than the second, zero if the two
arguments match, and positive if the first argument is greater than the second (where “less
than” and “greater than” refer to whatever arbitrary ordering is appropriate).
The array is sorted in place; that is, when qsort returns, the array elements beginning at
base have been reordered.

Returns
qsort does not return a result.

Portability
qsort is required by ANSI (without specifying the sorting algorithm).

Chapter 1: Standard Utility Functions (‘stdlib.h’) 27

1.25 rand, srand—pseudo-random numbers

Synopsis
#include <stdlib.h>
int rand(void);
void srand(unsigned int seed);
int rand_r(unsigned int *seed);

Description
rand returns a different integer each time it is called; each integer is chosen by an algorithm
designed to be unpredictable, so that you can use rand when you require a random number.
The algorithm depends on a static variable called the “random seed”; starting with a given
value of the random seed always produces the same sequence of numbers in successive calls
to rand.
You can set the random seed using srand; it does nothing beyond storing its argument in the
static variable used by rand. You can exploit this to make the pseudo-random sequence less
predictable, if you wish, by using some other unpredictable value (often the least significant
parts of a time-varying value) as the random seed before beginning a sequence of calls to
rand; or, if you wish to ensure (for example, while debugging) that successive runs of your
program use the same “random” numbers, you can use srand to set the same random seed
at the outset.

Returns
rand returns the next pseudo-random integer in sequence; it is a number between 0 and
RAND_MAX (inclusive).
srand does not return a result.

Portability
rand is required by ANSI, but the algorithm for pseudo-random number generation is not
specified; therefore, even if you use the same random seed, you cannot expect the same
sequence of results on two different systems.
rand requires no supporting OS subroutines.

28 Cygnus C Support Library, Full

1.26 strtod, strtodf—string to double or float

Synopsis
#include <stdlib.h>
double strtod(const char *str, char **tail);
float strtodf(const char *str, char **tail);

double _strtod_r(void *reent,
const char *str, char **tail);

Description
The function strtod parses the character string str, producing a substring which can be
converted to a double value. The substring converted is the longest initial subsequence of
str, beginning with the first non-whitespace character, that has the format:

[+|-]digits[.][digits][(e|E)[+|-]digits]

The substring contains no characters if str is empty, consists entirely of whitespace, or if the
first non-whitespace character is something other than +, -, ., or a digit. If the substring
is empty, no conversion is done, and the value of str is stored in *tail. Otherwise, the
substring is converted, and a pointer to the final string (which will contain at least the
terminating null character of str) is stored in *tail. If you want no assignment to *tail, pass
a null pointer as tail. strtodf is identical to strtod except for its return type.
This implementation returns the nearest machine number to the input decimal string. Ties
are broken by using the IEEE round-even rule.
The alternate function _strtod_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
strtod returns the converted substring value, if any. If no conversion could be performed,
0 is returned. If the correct value is out of the range of representable values, plus or minus
HUGE_VAL is returned, and ERANGE is stored in errno. If the correct value would cause
underflow, 0 is returned and ERANGE is stored in errno.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 29

1.27 strtol—string to long

Synopsis
#include <stdlib.h>
long strtol(const char *s, char **ptr,int base);

long _strtol_r(void *reent,
const char *s, char **ptr,int base);

Description
The function strtol converts the string *s to a long. First, it breaks down the string into
three parts: leading whitespace, which is ignored; a subject string consisting of characters
resembling an integer in the radix specified by base; and a trailing portion consisting of
zero or more unparseable characters, and always including the terminating null character.
Then, it attempts to convert the subject string into a long and returns the result.

If the value of base is 0, the subject string is expected to look like a normal C integer
constant: an optional sign, a possible ‘0x’ indicating a hexadecimal base, and a number.
If base is between 2 and 36, the expected form of the subject is a sequence of letters and
digits representing an integer in the radix specified by base, with an optional plus or minus
sign. The letters a–z (or, equivalently, A–Z) are used to signify values from 10 to 35; only
letters whose ascribed values are less than base are permitted. If base is 16, a leading 0x is
permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible letter or
digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtol attempts to deter-
mine the radix from the input string. A string with a leading 0x is treated as a hexadecimal
value; a string with a leading 0 and no x is treated as octal; all other strings are treated as
decimal. If base is between 2 and 36, it is used as the conversion radix, as described above.
If the subject string begins with a minus sign, the value is negated. Finally, a pointer to
the first character past the converted subject string is stored in ptr, if ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _strtol_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
strtol returns the converted value, if any. If no conversion was made, 0 is returned.

strtol returns LONG_MAX or LONG_MIN if the magnitude of the converted value is too large,
and sets errno to ERANGE.

Portability
strtol is ANSI.

No supporting OS subroutines are required.

30 Cygnus C Support Library, Full

Chapter 1: Standard Utility Functions (‘stdlib.h’) 31

1.28 strtoul—string to unsigned long

Synopsis
#include <stdlib.h>
unsigned long strtoul(const char *s, char **ptr,

int base);

unsigned long _strtoul_r(void *reent, const char *s,
char **ptr, int base);

Description
The function strtoul converts the string *s to an unsigned long. First, it breaks down
the string into three parts: leading whitespace, which is ignored; a subject string consisting
of the digits meaningful in the radix specified by base (for example, 0 through 7 if the value
of base is 8); and a trailing portion consisting of one or more unparseable characters, which
always includes the terminating null character. Then, it attempts to convert the subject
string into an unsigned long integer, and returns the result.
If the value of base is zero, the subject string is expected to look like a normal C integer
constant (save that no optional sign is permitted): a possible 0x indicating hexadecimal
radix, and a number. If base is between 2 and 36, the expected form of the subject is
a sequence of digits (which may include letters, depending on the base) representing an
integer in the radix specified by base. The letters a–z (or A–Z) are used as digits valued
from 10 to 35. If base is 16, a leading 0x is permitted.
The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible digit, the
subject string is empty.
If the subject string is acceptable, and the value of base is zero, strtoul attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as
described above. Finally, a pointer to the first character past the converted subject string
is stored in ptr, if ptr is not NULL.
If the subject string is empty (that is, if *s does not start with a substring in acceptable
form), no conversion is performed and the value of s is stored in ptr (if ptr is not NULL).
The alternate function _strtoul_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
strtoul returns the converted value, if any. If no conversion was made, 0 is returned.
strtoul returns ULONG_MAX if the magnitude of the converted value is too large, and sets
errno to ERANGE.

Portability
strtoul is ANSI.
strtoul requires no supporting OS subroutines.

32 Cygnus C Support Library, Full

Chapter 1: Standard Utility Functions (‘stdlib.h’) 33

1.29 system—execute command string

Synopsis
#include <stdlib.h>
int system(char *s);

int _system_r(void *reent, char *s);

Description

Use system to pass a command string *s to /bin/sh on your system, and wait for it to
finish executing.
Use ‘system(NULL)’ to test whether your system has /bin/sh available.
The alternate function _system_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
system(NULL) returns a non-zero value if /bin/sh is available, and 0 if it is not.
With a command argument, the result of system is the exit status returned by /bin/sh.

Portability
ANSI C requires system, but leaves the nature and effects of a command processor unde-
fined. ANSI C does, however, specify that system(NULL) return zero or nonzero to report
on the existence of a command processor.
POSIX.2 requires system, and requires that it invoke a sh. Where sh is found is left
unspecified.
Supporting OS subroutines required: _exit, _execve, _fork_r, _wait_r.

34 Cygnus C Support Library, Full

1.30 wcstombs—minimal wide char string to multibyte string
converter

Synopsis
#include <stdlib.h>
int wcstombs(const char *s, wchar_t *pwc, size_t n);

Description
When MB CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of wcstombs. In this case, all wide-characters are expected to represent single bytes and so
are converted simply by casting to char.
When MB CAPABLE is defined, this routine calls _wcstombs_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns
This implementation of wcstombs returns 0 if s is NULL or is the empty string; it returns
-1 if MB CAPABLE and one of the wide-char characters does not represent a valid multi-
byte character; otherwise it returns the minimum of: n or the number of bytes that are
transferred to s, not including the nul terminator.
If the return value is -1, the state of the pwc string is indeterminate. If the input has a
length of 0, the output string will be modified to contain a wchar t nul terminator if n > 0.

Portability
wcstombs is required in the ANSI C standard. However, the precise effects vary with the
locale.
wcstombs requires no supporting OS subroutines.

Chapter 1: Standard Utility Functions (‘stdlib.h’) 35

1.31 wctomb—minimal wide char to multibyte converter

Synopsis
#include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

Description
When MB CAPABLE is not defined, this is a minimal ANSI-conforming implementation of
wctomb. The only “wide characters” recognized are single bytes, and they are “converted”
to themselves.
When MB CAPABLE is defined, this routine calls _wctomb_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.
Each call to wctomb modifies *s unless s is a null pointer or MB CAPABLE is defined and
wchar is invalid.

Returns
This implementation of wctomb returns 0 if s is NULL; it returns -1 if MB CAPABLE is
enabled and the wchar is not a valid multi-byte character, it returns 1 if MB CAPABLE
is not defined or the wchar is in reality a single byte character, otherwise it returns the
number of bytes in the multi-byte character.

Portability
wctomb is required in the ANSI C standard. However, the precise effects vary with the
locale.
wctomb requires no supporting OS subroutines.

36 Cygnus C Support Library, Full

Chapter 2: Character Type Macros and Functions (‘ctype.h’) 37

2 Character Type Macros and Functions
(‘ctype.h’)

This chapter groups macros (which are also available as subroutines) to classify characters
into several categories (alphabetic, numeric, control characters, whitespace, and so on), or
to perform simple character mappings.
The header file ‘ctype.h’ defines the macros.

38 Cygnus C Support Library, Full

2.1 isalnum—alphanumeric character predicate

Synopsis
#include <ctype.h>
int isalnum(int c);

Description
isalnum is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for alphabetic or numeric ASCII characters, and 0 for other arguments.
It is defined for all integer values.
You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isalnum’.

Returns
isalnum returns non-zero if c is a letter (a–z or A–Z) or a digit (0–9).

Portability
isalnum is ANSI C.
No OS subroutines are required.

Chapter 2: Character Type Macros and Functions (‘ctype.h’) 39

2.2 isalpha—alphabetic character predicate

Synopsis
#include <ctype.h>
int isalpha(int c);

Description
isalpha is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero when c represents an alphabetic ASCII character, and 0 otherwise. It is
defined only when isascii(c) is true or c is EOF.
You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isalpha’.

Returns
isalpha returns non-zero if c is a letter (A–Z or a–z).

Portability
isalpha is ANSI C.
No supporting OS subroutines are required.

40 Cygnus C Support Library, Full

2.3 isascii—ASCII character predicate

Synopsis
#include <ctype.h>
int isascii(int c);

Description
isascii is a macro which returns non-zero when c is an ASCII character, and 0 otherwise.
It is defined for all integer values.
You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isascii’.

Returns
isascii returns non-zero if the low order byte of c is in the range 0 to 127 (0x00–0x7F).

Portability
isascii is ANSI C.
No supporting OS subroutines are required.

Chapter 2: Character Type Macros and Functions (‘ctype.h’) 41

2.4 iscntrl—control character predicate

Synopsis
#include <ctype.h>
int iscntrl(int c);

Description
iscntrl is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for control characters, and 0 for other characters. It is defined only when
isascii(c) is true or c is EOF.
You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef iscntrl’.

Returns
iscntrl returns non-zero if c is a delete character or ordinary control character (0x7F or
0x00–0x1F).

Portability
iscntrl is ANSI C.
No supporting OS subroutines are required.

42 Cygnus C Support Library, Full

2.5 isdigit—decimal digit predicate

Synopsis
#include <ctype.h>
int isdigit(int c);

Description
isdigit is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for decimal digits, and 0 for other characters. It is defined only when
isascii(c) is true or c is EOF.
You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isdigit’.

Returns
isdigit returns non-zero if c is a decimal digit (0–9).

Portability
isdigit is ANSI C.
No supporting OS subroutines are required.

Chapter 2: Character Type Macros and Functions (‘ctype.h’) 43

2.6 islower—lower-case character predicate

Synopsis
#include <ctype.h>
int islower(int c);

Description
islower is a macro which classifies ASCII integer values by table lookup. It is a predi-
cate returning non-zero for minuscules (lower-case alphabetic characters), and 0 for other
characters. It is defined only when isascii(c) is true or c is EOF.
You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef islower’.

Returns
islower returns non-zero if c is a lower case letter (a–z).

Portability
islower is ANSI C.
No supporting OS subroutines are required.

44 Cygnus C Support Library, Full

2.7 isprint, isgraph—printable character predicates

Synopsis
#include <ctype.h>
int isprint(int c);
int isgraph(int c);

Description
isprint is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for printable characters, and 0 for other character arguments. It is
defined only when isascii(c) is true or c is EOF.
You can use a compiled subroutine instead of the macro definition by undefining either
macro using ‘#undef isprint’ or ‘#undef isgraph’.

Returns
isprint returns non-zero if c is a printing character, (0x20–0x7E). isgraph behaves iden-
tically to isprint, except that the space character (0x20) is excluded.

Portability
isprint and isgraph are ANSI C.
No supporting OS subroutines are required.

Chapter 2: Character Type Macros and Functions (‘ctype.h’) 45

2.8 ispunct—punctuation character predicate

Synopsis
#include <ctype.h>
int ispunct(int c);

Description
ispunct is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for printable punctuation characters, and 0 for other characters. It is
defined only when isascii(c) is true or c is EOF.
You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef ispunct’.

Returns
ispunct returns non-zero if c is a printable punctuation character (isgraph(c) &&
!isalnum(c)).

Portability
ispunct is ANSI C.
No supporting OS subroutines are required.

46 Cygnus C Support Library, Full

2.9 isspace—whitespace character predicate

Synopsis
#include <ctype.h>
int isspace(int c);

Description
isspace is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for whitespace characters, and 0 for other characters. It is defined only
when isascii(c) is true or c is EOF.
You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isspace’.

Returns
isspace returns non-zero if c is a space, tab, carriage return, new line, vertical tab, or
formfeed (0x09–0x0D, 0x20).

Portability
isspace is ANSI C.
No supporting OS subroutines are required.

Chapter 2: Character Type Macros and Functions (‘ctype.h’) 47

2.10 isupper—uppercase character predicate

Synopsis
#include <ctype.h>
int isupper(int c);

Description
isupper is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for upper-case letters (A–Z), and 0 for other characters. It is defined
only when isascii(c) is true or c is EOF.
You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isupper’.

Returns
isupper returns non-zero if c is a upper case letter (A-Z).

Portability
isupper is ANSI C.
No supporting OS subroutines are required.

48 Cygnus C Support Library, Full

2.11 isxdigit—hexadecimal digit predicate

Synopsis
#include <ctype.h>
int isxdigit(int c);

Description
isxdigit is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for hexadecimal digits, and 0 for other characters. It is defined only
when isascii(c) is true or c is EOF.
You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isxdigit’.

Returns
isxdigit returns non-zero if c is a hexadecimal digit (0–9, a–f, or A–F).

Portability
isxdigit is ANSI C.
No supporting OS subroutines are required.

Chapter 2: Character Type Macros and Functions (‘ctype.h’) 49

2.12 toascii—force integers to ASCII range

Synopsis
#include <ctype.h>
int toascii(int c);

Description
toascii is a macro which coerces integers to the ASCII range (0–127) by zeroing any
higher-order bits.
You can use a compiled subroutine instead of the macro definition by undefining this macro
using ‘#undef toascii’.

Returns
toascii returns integers between 0 and 127.

Portability
toascii is not ANSI C.
No supporting OS subroutines are required.

50 Cygnus C Support Library, Full

2.13 tolower—translate characters to lower case

Synopsis
#include <ctype.h>
int tolower(int c);
int _tolower(int c);

Description
tolower is a macro which converts upper-case characters to lower case, leaving all other
characters unchanged. It is only defined when c is an integer in the range EOF to 255.
You can use a compiled subroutine instead of the macro definition by undefining this macro
using ‘#undef tolower’.
_tolower performs the same conversion as tolower, but should only be used when c is
known to be an uppercase character (A–Z).

Returns
tolower returns the lower-case equivalent of c when it is a character between A and Z, and
c otherwise.
_tolower returns the lower-case equivalent of c when it is a character between A and Z. If
c is not one of these characters, the behaviour of _tolower is undefined.

Portability
tolower is ANSI C. _tolower is not recommended for portable programs.
No supporting OS subroutines are required.

Chapter 2: Character Type Macros and Functions (‘ctype.h’) 51

2.14 toupper—translate characters to upper case

Synopsis
#include <ctype.h>
int toupper(int c);
int _toupper(int c);

Description
toupper is a macro which converts lower-case characters to upper case, leaving all other
characters unchanged. It is only defined when c is an integer in the range EOF to 255.
You can use a compiled subroutine instead of the macro definition by undefining this macro
using ‘#undef toupper’.
_toupper performs the same conversion as toupper, but should only be used when c is
known to be a lowercase character (a–z).

Returns
toupper returns the upper-case equivalent of c when it is a character between a and z, and
c otherwise.
_toupper returns the upper-case equivalent of c when it is a character between a and z. If
c is not one of these characters, the behaviour of _toupper is undefined.

Portability
toupper is ANSI C. _toupper is not recommended for portable programs.
No supporting OS subroutines are required.

52 Cygnus C Support Library, Full

Chapter 3: Input and Output (‘stdio.h’) 53

3 Input and Output (‘stdio.h’)

This chapter comprises functions to manage files or other input/output streams. Among
these functions are subroutines to generate or scan strings according to specifications from
a format string.
The underlying facilities for input and output depend on the host system, but these functions
provide a uniform interface.
The corresponding declarations are in ‘stdio.h’.
The reentrant versions of these functions use macros

_stdin_r(reent)
_stdout_r(reent)
_stderr_r(reent)

instead of the globals stdin, stdout, and stderr. The argument <[reent]> is a pointer to
a reentrancy structure.

54 Cygnus C Support Library, Full

3.1 clearerr—clear file or stream error indicator

Synopsis
#include <stdio.h>
void clearerr(FILE *fp);

Description
The stdio functions maintain an error indicator with each file pointer fp, to record whether
any read or write errors have occurred on the associated file or stream. Similarly, it main-
tains an end-of-file indicator to record whether there is no more data in the file.
Use clearerr to reset both of these indicators.
See ferror and feof to query the two indicators.

Returns
clearerr does not return a result.

Portability
ANSI C requires clearerr.
No supporting OS subroutines are required.

Chapter 3: Input and Output (‘stdio.h’) 55

3.2 fclose—close a file

Synopsis
#include <stdio.h>
int fclose(FILE *fp);

Description
If the file or stream identified by fp is open, fclose closes it, after first ensuring that any
pending data is written (by calling fflush(fp)).

Returns
fclose returns 0 if successful (including when fp is NULL or not an open file); otherwise, it
returns EOF.

Portability
fclose is required by ANSI C.
Required OS subroutines: close, fstat, isatty, lseek, read, sbrk, write.

56 Cygnus C Support Library, Full

3.3 feof—test for end of file

Synopsis
#include <stdio.h>
int feof(FILE *fp);

Description
feof tests whether or not the end of the file identified by fp has been reached.

Returns
feof returns 0 if the end of file has not yet been reached; if at end of file, the result is
nonzero.

Portability
feof is required by ANSI C.
No supporting OS subroutines are required.

Chapter 3: Input and Output (‘stdio.h’) 57

3.4 ferror—test whether read/write error has occurred

Synopsis
#include <stdio.h>
int ferror(FILE *fp);

Description
The stdio functions maintain an error indicator with each file pointer fp, to record whether
any read or write errors have occurred on the associated file or stream. Use ferror to query
this indicator.
See clearerr to reset the error indicator.

Returns
ferror returns 0 if no errors have occurred; it returns a nonzero value otherwise.

Portability
ANSI C requires ferror.
No supporting OS subroutines are required.

58 Cygnus C Support Library, Full

3.5 fflush—flush buffered file output

Synopsis
#include <stdio.h>
int fflush(FILE *fp);

Description
The stdio output functions can buffer output before delivering it to the host system, in
order to minimize the overhead of system calls.
Use fflush to deliver any such pending output (for the file or stream identified by fp) to
the host system.
If fp is NULL, fflush delivers pending output from all open files.

Returns
fflush returns 0 unless it encounters a write error; in that situation, it returns EOF.

Portability
ANSI C requires fflush.
No supporting OS subroutines are required.

Chapter 3: Input and Output (‘stdio.h’) 59

3.6 fgetc—get a character from a file or stream

Synopsis
#include <stdio.h>
int fgetc(FILE *fp);

Description
Use fgetc to get the next single character from the file or stream identified by fp. As a
side effect, fgetc advances the file’s current position indicator.
For a macro version of this function, see getc.

Returns
The next character (read as an unsigned char, and cast to int), unless there is no more
data, or the host system reports a read error; in either of these situations, fgetc returns
EOF.
You can distinguish the two situations that cause an EOF result by using the ferror and
feof functions.

Portability
ANSI C requires fgetc.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

60 Cygnus C Support Library, Full

3.7 fgetpos—record position in a stream or file

Synopsis
#include <stdio.h>
int fgetpos(FILE *fp, fpos_t *pos);

Description
Objects of type FILE can have a “position” that records how much of the file your program
has already read. Many of the stdio functions depend on this position, and many change
it as a side effect.
You can use fgetpos to report on the current position for a file identified by fp; fgetpos
will write a value representing that position at *pos. Later, you can use this value with
fsetpos to return the file to this position.
In the current implementation, fgetpos simply uses a character count to represent the file
position; this is the same number that would be returned by ftell.

Returns
fgetpos returns 0 when successful. If fgetpos fails, the result is 1. Failure occurs on
streams that do not support positioning; the global errno indicates this condition with the
value ESPIPE.

Portability
fgetpos is required by the ANSI C standard, but the meaning of the value it records is not
specified beyond requiring that it be acceptable as an argument to fsetpos. In particular,
other conforming C implementations may return a different result from ftell than what
fgetpos writes at *pos.
No supporting OS subroutines are required.

Chapter 3: Input and Output (‘stdio.h’) 61

3.8 fgets—get character string from a file or stream

Synopsis
#include <stdio.h>
char *fgets(char *buf, int n, FILE *fp);

Description
Reads at most n-1 characters from fp until a newline is found. The characters including to
the newline are stored in buf. The buffer is terminated with a 0.

Returns
fgets returns the buffer passed to it, with the data filled in. If end of file occurs with some
data already accumulated, the data is returned with no other indication. If no data are
read, NULL is returned instead.

Portability
fgets should replace all uses of gets. Note however that fgets returns all of the data,
while gets removes the trailing newline (with no indication that it has done so.)
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

62 Cygnus C Support Library, Full

3.9 fiprintf—format output to file (integer only)

Synopsis
#include <stdio.h>

int fiprintf(FILE *fd, const char *format, ...);

Description
fiprintf is a restricted version of fprintf: it has the same arguments and behavior, save
that it cannot perform any floating-point formatting—the f, g, G, e, and F type specifiers
are not recognized.

Returns
fiprintf returns the number of bytes in the output string, save that the concluding NULL
is not counted. fiprintf returns when the end of the format string is encountered. If an
error occurs, fiprintf returns EOF.

Portability
fiprintf is not required by ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 3: Input and Output (‘stdio.h’) 63

3.10 fopen—open a file

Synopsis
#include <stdio.h>
FILE *fopen(const char *file, const char *mode);

FILE *_fopen_r(void *reent,
const char *file, const char *mode);

Description
fopen initializes the data structures needed to read or write a file. Specify the file’s name
as the string at file, and the kind of access you need to the file with the string at mode.
The alternate function _fopen_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.
Three fundamental kinds of access are available: read, write, and append. *mode must
begin with one of the three characters ‘r’, ‘w’, or ‘a’, to select one of these:

r Open the file for reading; the operation will fail if the file does not exist, or if
the host system does not permit you to read it.

w Open the file for writing from the beginning of the file: effectively, this always
creates a new file. If the file whose name you specified already existed, its old
contents are discarded.

a Open the file for appending data, that is writing from the end of file. When
you open a file this way, all data always goes to the current end of file; you
cannot change this using fseek.

Some host systems distinguish between “binary” and “text” files. Such systems may perform
data transformations on data written to, or read from, files opened as “text”. If your system
is one of these, then you can append a ‘b’ to any of the three modes above, to specify that
you are opening the file as a binary file (the default is to open the file as a text file).
‘rb’, then, means “read binary”; ‘wb’, “write binary”; and ‘ab’, “append binary”.
To make C programs more portable, the ‘b’ is accepted on all systems, whether or not it
makes a difference.
Finally, you might need to both read and write from the same file. You can also append a
‘+’ to any of the three modes, to permit this. (If you want to append both ‘b’ and ‘+’, you
can do it in either order: for example, "rb+" means the same thing as "r+b" when used as
a mode string.)
Use "r+" (or "rb+") to permit reading and writing anywhere in an existing file, without
discarding any data; "w+" (or "wb+") to create a new file (or begin by discarding all data
from an old one) that permits reading and writing anywhere in it; and "a+" (or "ab+") to
permit reading anywhere in an existing file, but writing only at the end.

Returns
fopen returns a file pointer which you can use for other file operations, unless the file you
requested could not be opened; in that situation, the result is NULL. If the reason for failure
was an invalid string at mode, errno is set to EINVAL.

64 Cygnus C Support Library, Full

Portability
fopen is required by ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek, open, read, sbrk,
write.

Chapter 3: Input and Output (‘stdio.h’) 65

3.11 fdopen—turn open file into a stream

Synopsis
#include <stdio.h>
FILE *fdopen(int fd, const char *mode);
FILE *_fdopen_r(void *reent,

int fd, const char *mode);

Description
fdopen produces a file descriptor of type FILE *, from a descriptor for an already-open file
(returned, for example, by the system subroutine open rather than by fopen). The mode
argument has the same meanings as in fopen.

Returns
File pointer or NULL, as for fopen.

Portability
fdopen is ANSI.

66 Cygnus C Support Library, Full

3.12 fputc—write a character on a stream or file

Synopsis
#include <stdio.h>
int fputc(int ch, FILE *fp);

Description
fputc converts the argument ch from an int to an unsigned char, then writes it to the
file or stream identified by fp.
If the file was opened with append mode (or if the stream cannot support positioning), then
the new character goes at the end of the file or stream. Otherwise, the new character is
written at the current value of the position indicator, and the position indicator oadvances
by one.
For a macro version of this function, see putc.

Returns
If successful, fputc returns its argument ch. If an error intervenes, the result is EOF. You
can use ‘ferror(fp)’ to query for errors.

Portability
fputc is required by ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 3: Input and Output (‘stdio.h’) 67

3.13 fputs—write a character string in a file or stream

Synopsis
#include <stdio.h>
int fputs(const char *s, FILE *fp);

Description
fputs writes the string at s (but without the trailing null) to the file or stream identified
by fp.

Returns
If successful, the result is 0; otherwise, the result is EOF.

Portability
ANSI C requires fputs, but does not specify that the result on success must be 0; any
non-negative value is permitted.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

68 Cygnus C Support Library, Full

3.14 fread—read array elements from a file

Synopsis
#include <stdio.h>
size_t fread(void *buf, size_t size, size_t count,

FILE *fp);

Description
fread attempts to copy, from the file or stream identified by fp, count elements (each of
size size) into memory, starting at buf. fread may copy fewer elements than count if an
error, or end of file, intervenes.
fread also advances the file position indicator (if any) for fp by the number of characters
actually read.

Returns
The result of fread is the number of elements it succeeded in reading.

Portability
ANSI C requires fread.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 3: Input and Output (‘stdio.h’) 69

3.15 freopen—open a file using an existing file descriptor

Synopsis
#include <stdio.h>
FILE *freopen(const char *file, const char *mode,

FILE *fp);

Description
Use this variant of fopen if you wish to specify a particular file descriptor fp (notably stdin,
stdout, or stderr) for the file.
If fp was associated with another file or stream, freopen closes that other file or stream
(but ignores any errors while closing it).
file and mode are used just as in fopen.

Returns
If successful, the result is the same as the argument fp. If the file cannot be opened as
specified, the result is NULL.

Portability
ANSI C requires freopen.
Supporting OS subroutines required: close, fstat, isatty, lseek, open, read, sbrk,
write.

70 Cygnus C Support Library, Full

3.16 fseek—set file position

Synopsis
#include <stdio.h>
int fseek(FILE *fp, long offset, int whence)

Description
Objects of type FILE can have a “position” that records how much of the file your program
has already read. Many of the stdio functions depend on this position, and many change
it as a side effect.
You can use fseek to set the position for the file identified by fp. The value of offset
determines the new position, in one of three ways selected by the value of whence (defined
as macros in ‘stdio.h’):
SEEK_SET—offset is the absolute file position (an offset from the beginning of the file)
desired. offset must be positive.
SEEK_CUR—offset is relative to the current file position. offset can meaningfully be either
positive or negative.
SEEK_END—offset is relative to the current end of file. offset can meaningfully be either
positive (to increase the size of the file) or negative.
See ftell to determine the current file position.

Returns
fseek returns 0 when successful. If fseek fails, the result is EOF. The reason for failure is
indicated in errno: either ESPIPE (the stream identified by fp doesn’t support repositioning)
or EINVAL (invalid file position).

Portability
ANSI C requires fseek.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 3: Input and Output (‘stdio.h’) 71

3.17 fsetpos—restore position of a stream or file

Synopsis
#include <stdio.h>
int fsetpos(FILE *fp, const fpos_t *pos);

Description
Objects of type FILE can have a “position” that records how much of the file your program
has already read. Many of the stdio functions depend on this position, and many change
it as a side effect.
You can use fsetpos to return the file identified by fp to a previous position *pos (after
first recording it with fgetpos).
See fseek for a similar facility.

Returns
fgetpos returns 0 when successful. If fgetpos fails, the result is 1. The reason for failure is
indicated in errno: either ESPIPE (the stream identified by fp doesn’t support repositioning)
or EINVAL (invalid file position).

Portability
ANSI C requires fsetpos, but does not specify the nature of *pos beyond identifying it as
written by fgetpos.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

72 Cygnus C Support Library, Full

3.18 ftell—return position in a stream or file

Synopsis
#include <stdio.h>
long ftell(FILE *fp);

Description
Objects of type FILE can have a “position” that records how much of the file your program
has already read. Many of the stdio functions depend on this position, and many change
it as a side effect.
The result of ftell is the current position for a file identified by fp. If you record this
result, you can later use it with fseek to return the file to this position.
In the current implementation, ftell simply uses a character count to represent the file
position; this is the same number that would be recorded by fgetpos.

Returns
ftell returns the file position, if possible. If it cannot do this, it returns -1L. Failure occurs
on streams that do not support positioning; the global errno indicates this condition with
the value ESPIPE.

Portability
ftell is required by the ANSI C standard, but the meaning of its result (when successful) is
not specified beyond requiring that it be acceptable as an argument to fseek. In particular,
other conforming C implementations may return a different result from ftell than what
fgetpos records.
No supporting OS subroutines are required.

Chapter 3: Input and Output (‘stdio.h’) 73

3.19 fwrite—write array elements

Synopsis
#include <stdio.h>
size_t fwrite(const void *buf, size_t size,

size_t count, FILE *fp);

Description
fwrite attempts to copy, starting from the memory location buf, count elements (each of
size size) into the file or stream identified by fp. fwrite may copy fewer elements than
count if an error intervenes.
fwrite also advances the file position indicator (if any) for fp by the number of characters
actually written.

Returns
If fwrite succeeds in writing all the elements you specify, the result is the same as the
argument count. In any event, the result is the number of complete elements that fwrite
copied to the file.

Portability
ANSI C requires fwrite.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

74 Cygnus C Support Library, Full

3.20 getc—read a character (macro)

Synopsis
#include <stdio.h>
int getc(FILE *fp);

Description
getc is a macro, defined in stdio.h. You can use getc to get the next single character
from the file or stream identified by fp. As a side effect, getc advances the file’s current
position indicator.
For a subroutine version of this macro, see fgetc.

Returns
The next character (read as an unsigned char, and cast to int), unless there is no more
data, or the host system reports a read error; in either of these situations, getc returns
EOF.
You can distinguish the two situations that cause an EOF result by using the ferror and
feof functions.

Portability
ANSI C requires getc; it suggests, but does not require, that getc be implemented as a
macro. The standard explicitly permits macro implementations of getc to use the argument
more than once; therefore, in a portable program, you should not use an expression with
side effects as the getc argument.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 3: Input and Output (‘stdio.h’) 75

3.21 getchar—read a character (macro)

Synopsis
#include <stdio.h>
int getchar(void);

int _getchar_r(void *reent);

Description
getchar is a macro, defined in stdio.h. You can use getchar to get the next single
character from the standard input stream. As a side effect, getchar advances the standard
input’s current position indicator.
The alternate function _getchar_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
The next character (read as an unsigned char, and cast to int), unless there is no more
data, or the host system reports a read error; in either of these situations, getchar returns
EOF.
You can distinguish the two situations that cause an EOF result by using ‘ferror(stdin)’
and ‘feof(stdin)’.

Portability
ANSI C requires getchar; it suggests, but does not require, that getchar be implemented
as a macro.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

76 Cygnus C Support Library, Full

3.22 gets—get character string (obsolete, use fgets instead)

Synopsis
#include <stdio.h>

char *gets(char *buf);

char *_gets_r(void *reent, char *buf);

Description
Reads characters from standard input until a newline is found. The characters up to the
newline are stored in buf. The newline is discarded, and the buffer is terminated with a 0.
This is a dangerous function, as it has no way of checking the amount of space available in
buf. One of the attacks used by the Internet Worm of 1988 used this to overrun a buffer
allocated on the stack of the finger daemon and overwrite the return address, causing the
daemon to execute code downloaded into it over the connection.
The alternate function _gets_r is a reentrant version. The extra argument reent is a pointer
to a reentrancy structure.

Returns
gets returns the buffer passed to it, with the data filled in. If end of file occurs with some
data already accumulated, the data is returned with no other indication. If end of file occurs
with no data in the buffer, NULL is returned.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 3: Input and Output (‘stdio.h’) 77

3.23 iprintf—write formatted output (integer only)

Synopsis
#include <stdio.h>

int iprintf(const char *format, ...);

Description
iprintf is a restricted version of printf: it has the same arguments and behavior, save
that it cannot perform any floating-point formatting: the f, g, G, e, and F type specifiers
are not recognized.

Returns
iprintf returns the number of bytes in the output string, save that the concluding NULL is
not counted. iprintf returns when the end of the format string is encountered. If an error
occurs, iprintf returns EOF.

Portability
iprintf is not required by ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

78 Cygnus C Support Library, Full

3.24 mktemp, mkstemp—generate unused file name

Synopsis
#include <stdio.h>
char *mktemp(char *path);
int mkstemp(char *path);

char *_mktemp_r(void *reent, char *path);
int *_mkstemp_r(void *reent, char *path);

Description
mktemp and mkstemp attempt to generate a file name that is not yet in use for any existing
file. mkstemp creates the file and opens it for reading and writing; mktemp simply generates
the file name.
You supply a simple pattern for the generated file name, as the string at path. The pattern
should be a valid filename (including path information if you wish) ending with some number
of ‘X’ characters. The generated filename will match the leading part of the name you supply,
with the trailing ‘X’ characters replaced by some combination of digits and letters.
The alternate functions _mktemp_r and _mkstemp_r are reentrant versions. The extra
argument reent is a pointer to a reentrancy structure.

Returns
mktemp returns the pointer path to the modified string representing an unused filename,
unless it could not generate one, or the pattern you provided is not suitable for a filename;
in that case, it returns NULL.
mkstemp returns a file descriptor to the newly created file, unless it could not generate an
unused filename, or the pattern you provided is not suitable for a filename; in that case, it
returns -1.

Portability
ANSI C does not require either mktemp or mkstemp; the System V Interface Definition
requires mktemp as of Issue 2.
Supporting OS subroutines required: getpid, open, stat.

Chapter 3: Input and Output (‘stdio.h’) 79

3.25 perror—print an error message on standard error

Synopsis
#include <stdio.h>
void perror(char *prefix);

void _perror_r(void *reent, char *prefix);

Description
Use perror to print (on standard error) an error message corresponding to the current value
of the global variable errno. Unless you use NULL as the value of the argument prefix, the
error message will begin with the string at prefix, followed by a colon and a space (:). The
remainder of the error message is one of the strings described for strerror.
The alternate function _perror_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
perror returns no result.

Portability
ANSI C requires perror, but the strings issued vary from one implementation to another.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

80 Cygnus C Support Library, Full

3.26 putc—write a character (macro)

Synopsis
#include <stdio.h>
int putc(int ch, FILE *fp);

Description
putc is a macro, defined in stdio.h. putc writes the argument ch to the file or stream
identified by fp, after converting it from an int to an unsigned char.
If the file was opened with append mode (or if the stream cannot support positioning), then
the new character goes at the end of the file or stream. Otherwise, the new character is
written at the current value of the position indicator, and the position indicator advances
by one.
For a subroutine version of this macro, see fputc.

Returns
If successful, putc returns its argument ch. If an error intervenes, the result is EOF. You
can use ‘ferror(fp)’ to query for errors.

Portability
ANSI C requires putc; it suggests, but does not require, that putc be implemented as
a macro. The standard explicitly permits macro implementations of putc to use the fp
argument more than once; therefore, in a portable program, you should not use an expression
with side effects as this argument.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 3: Input and Output (‘stdio.h’) 81

3.27 putchar—write a character (macro)

Synopsis
#include <stdio.h>
int putchar(int ch);

int _putchar_r(void *reent, int ch);

Description
putchar is a macro, defined in stdio.h. putchar writes its argument to the standard
output stream, after converting it from an int to an unsigned char.
The alternate function _putchar_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
If successful, putchar returns its argument ch. If an error intervenes, the result is EOF. You
can use ‘ferror(stdin)’ to query for errors.

Portability
ANSI C requires putchar; it suggests, but does not require, that putchar be implemented
as a macro.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

82 Cygnus C Support Library, Full

3.28 puts—write a character string

Synopsis
#include <stdio.h>
int puts(const char *s);

int _puts_r(void *reent, const char *s);

Description
puts writes the string at s (followed by a newline, instead of the trailing null) to the standard
output stream.
The alternate function _puts_r is a reentrant version. The extra argument reent is a pointer
to a reentrancy structure.

Returns
If successful, the result is a nonnegative integer; otherwise, the result is EOF.

Portability
ANSI C requires puts, but does not specify that the result on success must be 0; any
non-negative value is permitted.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 3: Input and Output (‘stdio.h’) 83

3.29 remove—delete a file’s name

Synopsis
#include <stdio.h>
int remove(char *filename);

int _remove_r(void *reent, char *filename);

Description
Use remove to dissolve the association between a particular filename (the string at filename)
and the file it represents. After calling remove with a particular filename, you will no longer
be able to open the file by that name.
In this implementation, you may use remove on an open file without error; existing file
descriptors for the file will continue to access the file’s data until the program using them
closes the file.
The alternate function _remove_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
remove returns 0 if it succeeds, -1 if it fails.

Portability
ANSI C requires remove, but only specifies that the result on failure be nonzero. The
behavior of remove when you call it on an open file may vary among implementations.
Supporting OS subroutine required: unlink.

84 Cygnus C Support Library, Full

3.30 rename—rename a file

Synopsis
#include <stdio.h>
int rename(const char *old, const char *new);

int _rename_r(void *reent,
const char *old, const char *new);

Description
Use rename to establish a new name (the string at new) for a file now known by the string
at old. After a successful rename, the file is no longer accessible by the string at old.
If rename fails, the file named *old is unaffected. The conditions for failure depend on the
host operating system.
The alternate function _rename_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
The result is either 0 (when successful) or -1 (when the file could not be renamed).

Portability
ANSI C requires rename, but only specifies that the result on failure be nonzero. The effects
of using the name of an existing file as *new may vary from one implementation to another.
Supporting OS subroutines required: link, unlink, or rename.

Chapter 3: Input and Output (‘stdio.h’) 85

3.31 rewind—reinitialize a file or stream

Synopsis
#include <stdio.h>
void rewind(FILE *fp);

Description
rewind returns the file position indicator (if any) for the file or stream identified by fp to
the beginning of the file. It also clears any error indicator and flushes any pending output.

Returns
rewind does not return a result.

Portability
ANSI C requires rewind.
No supporting OS subroutines are required.

86 Cygnus C Support Library, Full

3.32 setbuf—specify full buffering for a file or stream

Synopsis
#include <stdio.h>
void setbuf(FILE *fp, char *buf);

Description
setbuf specifies that output to the file or stream identified by fp should be fully buffered.
All output for this file will go to a buffer (of size BUFSIZ, specified in ‘stdio.h’). Output
will be passed on to the host system only when the buffer is full, or when an input operation
intervenes.
You may, if you wish, supply your own buffer by passing a pointer to it as the argument
buf. It must have size BUFSIZ. You can also use NULL as the value of buf, to signal that the
setbuf function is to allocate the buffer.

Warnings
You may only use setbuf before performing any file operation other than opening the file.
If you supply a non-null buf, you must ensure that the associated storage continues to be
available until you close the stream identified by fp.

Returns
setbuf does not return a result.

Portability
Both ANSI C and the System V Interface Definition (Issue 2) require setbuf. However,
they differ on the meaning of a NULL buffer pointer: the SVID issue 2 specification says that
a NULL buffer pointer requests unbuffered output. For maximum portability, avoid NULL
buffer pointers.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 3: Input and Output (‘stdio.h’) 87

3.33 setvbuf—specify file or stream buffering

Synopsis
#include <stdio.h>
int setvbuf(FILE *fp, char *buf,

int mode, size_t size);

Description
Use setvbuf to specify what kind of buffering you want for the file or stream identified by
fp, by using one of the following values (from stdio.h) as the mode argument:

_IONBF Do not use a buffer: send output directly to the host system for the file or
stream identified by fp.

_IOFBF Use full output buffering: output will be passed on to the host system only
when the buffer is full, or when an input operation intervenes.

_IOLBF Use line buffering: pass on output to the host system at every newline, as well
as when the buffer is full, or when an input operation intervenes.

Use the size argument to specify how large a buffer you wish. You can supply the buffer
itself, if you wish, by passing a pointer to a suitable area of memory as buf. Otherwise, you
may pass NULL as the buf argument, and setvbuf will allocate the buffer.

Warnings
You may only use setvbuf before performing any file operation other than opening the file.
If you supply a non-null buf, you must ensure that the associated storage continues to be
available until you close the stream identified by fp.

Returns
A 0 result indicates success, EOF failure (invalid mode or size can cause failure).

Portability
Both ANSI C and the System V Interface Definition (Issue 2) require setvbuf. However,
they differ on the meaning of a NULL buffer pointer: the SVID issue 2 specification says that
a NULL buffer pointer requests unbuffered output. For maximum portability, avoid NULL
buffer pointers.
Both specifications describe the result on failure only as a nonzero value.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

88 Cygnus C Support Library, Full

3.34 siprintf—write formatted output (integer only)

Synopsis
#include <stdio.h>

int siprintf(char *str, const char *format [, arg, ...]);

Description
siprintf is a restricted version of sprintf: it has the same arguments and behavior, save
that it cannot perform any floating-point formatting: the f, g, G, e, and F type specifiers
are not recognized.

Returns
siprintf returns the number of bytes in the output string, save that the concluding NULL
is not counted. siprintf returns when the end of the format string is encountered.

Portability
siprintf is not required by ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 3: Input and Output (‘stdio.h’) 89

3.35 printf, fprintf, sprintf, snprintf—format output

Synopsis
#include <stdio.h>

int printf(const char *format [, arg, ...]);
int fprintf(FILE *fd, const char *format [, arg, ...]);
int sprintf(char *str, const char *format [, arg, ...]);
int snprintf(char *str, size_t size, const char *format [, arg, ...]);

Description
printf accepts a series of arguments, applies to each a format specifier from *format, and
writes the formatted data to stdout, terminated with a null character. The behavior of
printf is undefined if there are not enough arguments for the format. printf returns
when it reaches the end of the format string. If there are more arguments than the format
requires, excess arguments are ignored.
fprintf, sprintf and snprintf are identical to printf, other than the destination of the
formatted output: fprintf sends the output to a specified file fd, while sprintf stores the
output in the specified char array str and snprintf limits number of characters written to
str to at most size (including terminating 0). For sprintf and snprintf, the behavior is
also undefined if the output *str overlaps with one of the arguments. format is a pointer
to a charater string containing two types of objects: ordinary characters (other than %),
which are copied unchanged to the output, and conversion specifications, each of which is
introduced by %. (To include % in the output, use %% in the format string.) A conversion
specification has the following form:

%[flags][width][.prec][size][type]

The fields of the conversion specification have the following meanings:
• flags

an optional sequence of characters which control output justification, numeric signs,
decimal points, trailing zeroes, and octal and hex prefixes. The flag characters are minus
(-), plus (+), space (), zero (0), and sharp (#). They can appear in any combination.

- The result of the conversion is left justified, and the right is padded with
blanks. If you do not use this flag, the result is right justified, and padded
on the left.

+ The result of a signed conversion (as determined by type) will always begin
with a plus or minus sign. (If you do not use this flag, positive values do
not begin with a plus sign.)

" " (space)
If the first character of a signed conversion specification is not a sign, or
if a signed conversion results in no characters, the result will begin with a
space. If the space () flag and the plus (+) flag both appear, the space flag
is ignored.

0 If the type character is d, i, o, u, x, X, e, E, f, g, or G: leading zeroes,
are used to pad the field width (following any indication of sign or base);
no spaces are used for padding. If the zero (0) and minus (-) flags both

90 Cygnus C Support Library, Full

appear, the zero (0) flag will be ignored. For d, i, o, u, x, and X conversions,
if a precision prec is specified, the zero (0) flag is ignored. Note that 0 is
interpreted as a flag, not as the beginning of a field width.

The result is to be converted to an alternative form, according to the next
character:

0 increases precision to force the first digit of the result to be a
zero.

x a non-zero result will have a 0x prefix.

X a non-zero result will have a 0X prefix.

e, E or f The result will always contain a decimal point even if no digits
follow the point. (Normally, a decimal point appears only if a
digit follows it.) Trailing zeroes are removed.

g or G same as e or E, but trailing zeroes are not removed.

all others
undefined.

• width

width is an optional minimum field width. You can either specify it directly as a
decimal integer, or indirectly by using instead an asterisk (*), in which case an int
argument is used as the field width. Negative field widths are not supported; if you
attempt to specify a negative field width, it is interpreted as a minus (-) flag followed
by a positive field width.

• prec

an optional field; if present, it is introduced with ‘.’ (a period). This field gives the
maximum number of characters to print in a conversion; the minimum number of digits
of an integer to print, for conversions with type d, i, o, u, x, and X; the maximum
number of significant digits, for the g and G conversions; or the number of digits to
print after the decimal point, for e, E, and f conversions. You can specify the precision
either directly as a decimal integer or indirectly by using an asterisk (*), in which case
an int argument is used as the precision. Supplying a negative precision is equivalent
to omitting the precision. If only a period is specified the precision is zero. If a
precision appears with any other conversion type than those listed here, the behavior
is undefined.

• size

h, l, and L are optional size characters which override the default way that printf
interprets the data type of the corresponding argument. h forces the following d, i,
o, u, x or X conversion type to apply to a short or unsigned short. h also forces a
following n type to apply to a pointer to a short. Similarily, an l forces the following
d, i, o, u, x or X conversion type to apply to a long or unsigned long. l also forces
a following n type to apply to a pointer to a long. If an h or an l appears with
another conversion specifier, the behavior is undefined. L forces a following e, E, f, g
or G conversion type to apply to a long double argument. If L appears with any other
conversion type, the behavior is undefined.

Chapter 3: Input and Output (‘stdio.h’) 91

• type

type specifies what kind of conversion printf performs. Here is a table of these:

% prints the percent character (%)

c prints arg as single character

s prints characters until precision is reached or a null terminator is encoun-
tered; takes a string pointer

d prints a signed decimal integer; takes an int (same as i)

i prints a signed decimal integer; takes an int (same as d)

o prints a signed octal integer; takes an int

u prints an unsigned decimal integer; takes an int

x prints an unsigned hexadecimal integer (using abcdef as digits beyond 9);
takes an int

X prints an unsigned hexadecimal integer (using ABCDEF as digits beyond 9);
takes an int

f prints a signed value of the form [-]9999.9999; takes a floating point
number

e prints a signed value of the form [-]9.9999e[+|-]999; takes a floating
point number

E prints the same way as e, but using E to introduce the exponent; takes a
floating point number

g prints a signed value in either f or e form, based on given value and
precision—trailing zeros and the decimal point are printed only if nec-
essary; takes a floating point number

G prints the same way as g, but using E for the exponent if an exponent is
needed; takes a floating point number

n stores (in the same object) a count of the characters written; takes a pointer
to int

p prints a pointer in an implementation-defined format. This implementation
treats the pointer as an unsigned long (same as Lu).

Returns
sprintf returns the number of bytes in the output string, save that the concluding NULL is
not counted. printf and fprintf return the number of characters transmitted. If an error
occurs, printf and fprintf return EOF. No error returns occur for sprintf.

Portability
The ANSI C standard specifies that implementations must support at least formatted out-
put of up to 509 characters.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

92 Cygnus C Support Library, Full

3.36 scanf, fscanf, sscanf—scan and format input

Synopsis
#include <stdio.h>

int scanf(const char *format [, arg, ...]);
int fscanf(FILE *fd, const char *format [, arg, ...]);
int sscanf(const char *str, const char *format

[, arg, ...]);

Description
scanf scans a series of input fields from standard input, one character at a time. Each
field is interpreted according to a format specifier passed to scanf in the format string at
*format. scanf stores the interpreted input from each field at the address passed to it as
the corresponding argument following format. You must supply the same number of format
specifiers and address arguments as there are input fields.

There must be sufficient address arguments for the given format specifiers; if not the results
are unpredictable and likely disasterous. Excess address arguments are merely ignored.

scanf often produces unexpected results if the input diverges from an expected pattern.
Since the combination of gets or fgets followed by sscanf is safe and easy, that is the
preferred way to be certain that a program is synchronized with input at the end of a line.

fscanf and sscanf are identical to scanf, other than the source of input: fscanf reads
from a file, and sscanf from a string.

The string at *format is a character sequence composed of zero or more directives. Directives
are composed of one or more whitespace characters, non-whitespace characters, and format
specifications.

Whitespace characters are blank (), tab (\t), or newline (\n). When scanf encounters
a whitespace character in the format string it will read (but not store) all consecutive
whitespace characters up to the next non-whitespace character in the input.

Non-whitespace characters are all other ASCII characters except the percent sign (%). When
scanf encounters a non-whitespace character in the format string it will read, but not store
a matching non-whitespace character.

Format specifications tell scanf to read and convert characters from the input field into
specific types of values, and store then in the locations specified by the address arguments.

Trailing whitespace is left unread unless explicitly matched in the format string.

The format specifiers must begin with a percent sign (%) and have the following form:
%[*][width][size]type

Each format specification begins with the percent character (%). The other fields are:

* an optional marker; if present, it suppresses interpretation and assignment of
this input field.

width an optional maximum field width: a decimal integer, which controls the maxi-
mum number of characters that will be read before converting the current input
field. If the input field has fewer than width characters, scanf reads all the

Chapter 3: Input and Output (‘stdio.h’) 93

characters in the field, and then proceeds with the next field and its format
specification.
If a whitespace or a non-convertable character occurs before width character
are read, the characters up to that character are read, converted, and stored.
Then scanf proceeds to the next format specification.

size h, l, and L are optional size characters which override the default way that
scanf interprets the data type of the corresponding argument.

Modifier Type(s)
h d, i, o, u, x convert input to short,

store in short object

h D, I, O, U, X no effect
e, f, c, s, n, p

l d, i, o, u, x convert input to long,
store in long object

l e, f, g convert input to double
store in a double object

l D, I, O, U, X no effect
c, s, n, p

L d, i, o, u, x convert to long double,
store in long double

L all others no effect

type

A character to specify what kind of conversion scanf performs. Here is a table
of the conversion characters:

% No conversion is done; the percent character (%) is stored.

c Scans one character. Corresponding arg : (char *arg).

s Reads a character string into the array supplied. Corresponding
arg : (char arg[]).

[pattern] Reads a non-empty character string into memory starting at arg.
This area must be large enough to accept the sequence and a termi-
nating null character which will be added automatically. (pattern
is discussed in the paragraph following this table). Corresponding
arg : (char *arg).

d Reads a decimal integer into the corresponding arg : (int *arg).

D Reads a decimal integer into the corresponding arg : (long *arg).

o Reads an octal integer into the corresponding arg : (int *arg).

O Reads an octal integer into the corresponding arg : (long *arg).

94 Cygnus C Support Library, Full

u Reads an unsigned decimal integer into the corresponding arg :
(unsigned int *arg).

U Reads an unsigned decimal integer into the corresponding arg :
(unsigned long *arg).

x,X Read a hexadecimal integer into the corresponding arg : (int
*arg).

e, f, g Read a floating point number into the corresponding arg : (float
*arg).

E, F, G Read a floating point number into the corresponding arg : (double
*arg).

i Reads a decimal, octal or hexadecimal integer into the correspond-
ing arg : (int *arg).

I Reads a decimal, octal or hexadecimal integer into the correspond-
ing arg : (long *arg).

n Stores the number of characters read in the corresponding arg :
(int *arg).

p Stores a scanned pointer. ANSI C leaves the details to each imple-
mentation; this implementation treats %p exactly the same as %U.
Corresponding arg : (void **arg).

A pattern of characters surrounded by square brackets can be used instead of
the s type character. pattern is a set of characters which define a search set of
possible characters making up the scanf input field. If the first character in the
brackets is a caret (^), the search set is inverted to include all ASCII characters
except those between the brackets. There is also a range facility which you can
use as a shortcut. %[0-9] matches all decimal digits. The hyphen must not be
the first or last character in the set. The character prior to the hyphen must
be lexically less than the character after it.
Here are some pattern examples:

%[abcd] matches strings containing only a, b, c, and d.

%[^abcd] matches strings containing any characters except a, b, c, or d

%[A-DW-Z]
matches strings containing A, B, C, D, W, X, Y, Z

%[z-a] matches the characters z, -, and a

Floating point numbers (for field types e, f, g, E, F, G) must correspond to the
following general form:

[+/-] ddddd[.]ddd [E|e[+|-]ddd]

where objects inclosed in square brackets are optional, and ddd represents dec-
imal, octal, or hexadecimal digits.

Returns

Chapter 3: Input and Output (‘stdio.h’) 95

scanf returns the number of input fields successfully scanned, converted and stored; the
return value does not include scanned fields which were not stored.
If scanf attempts to read at end-of-file, the return value is EOF.
If no fields were stored, the return value is 0.
scanf might stop scanning a particular field before reaching the normal field end character,
or may terminate entirely.
scanf stops scanning and storing the current field and moves to the next input field (if any)
in any of the following situations:
• The assignment suppressing character (*) appears after the % in the format specifica-

tion; the current input field is scanned but not stored.
• width characters have been read (width is a width specification, a positive decimal

integer).
• The next character read cannot be converted under the the current format (for example,

if a Z is read when the format is decimal).
• The next character in the input field does not appear in the search set (or does appear

in the inverted search set).

When scanf stops scanning the current input field for one of these reasons, the next char-
acter is considered unread and used as the first character of the following input field, or the
first character in a subsequent read operation on the input.
scanf will terminate under the following circumstances:
• The next character in the input field conflicts with a corresponding non-whitespace

character in the format string.
• The next character in the input field is EOF.
• The format string has been exhausted.

When the format string contains a character sequence that is not part of a format spec-
ification, the same character sequence must appear in the input; scanf will scan but not
store the matched characters. If a conflict occurs, the first conflicting character remains in
the input as if it had never been read.

Portability
scanf is ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

96 Cygnus C Support Library, Full

3.37 tmpfile—create a temporary file

Synopsis
#include <stdio.h>
FILE *tmpfile(void);

FILE *_tmpfile_r(void *reent);

Description
Create a temporary file (a file which will be deleted automatically), using a name generated
by tmpnam. The temporary file is opened with the mode "wb+", permitting you to read and
write anywhere in it as a binary file (without any data transformations the host system
may perform for text files).
The alternate function _tmpfile_r is a reentrant version. The argument reent is a pointer
to a reentrancy structure.

Returns
tmpfile normally returns a pointer to the temporary file. If no temporary file could be
created, the result is NULL, and errno records the reason for failure.

Portability
Both ANSI C and the System V Interface Definition (Issue 2) require tmpfile.
Supporting OS subroutines required: close, fstat, getpid, isatty, lseek, open, read,
sbrk, write.
tmpfile also requires the global pointer environ.

Chapter 3: Input and Output (‘stdio.h’) 97

3.38 tmpnam, tempnam—name for a temporary file

Synopsis
#include <stdio.h>
char *tmpnam(char *s);
char *tempnam(char *dir, char *pfx);
char *_tmpnam_r(void *reent, char *s);
char *_tempnam_r(void *reent, char *dir, char *pfx);

Description
Use either of these functions to generate a name for a temporary file. The generated name
is guaranteed to avoid collision with other files (for up to TMP_MAX calls of either function).
tmpnam generates file names with the value of P_tmpdir (defined in ‘stdio.h’) as the leading
directory component of the path.
You can use the tmpnam argument s to specify a suitable area of memory for the generated
filename; otherwise, you can call tmpnam(NULL) to use an internal static buffer.
tempnam allows you more control over the generated filename: you can use the argument
dir to specify the path to a directory for temporary files, and you can use the argument pfx
to specify a prefix for the base filename.
If dir is NULL, tempnam will attempt to use the value of environment variable TMPDIR instead;
if there is no such value, tempnam uses the value of P_tmpdir (defined in ‘stdio.h’).
If you don’t need any particular prefix to the basename of temporary files, you can pass
NULL as the pfx argument to tempnam.
_tmpnam_r and _tempnam_r are reentrant versions of tmpnam and tempnam respectively. The
extra argument reent is a pointer to a reentrancy structure.

Warnings
The generated filenames are suitable for temporary files, but do not in themselves make
files temporary. Files with these names must still be explicitly removed when you no longer
want them.
If you supply your own data area s for tmpnam, you must ensure that it has room for at
least L_tmpnam elements of type char.

Returns
Both tmpnam and tempnam return a pointer to the newly generated filename.

Portability
ANSI C requires tmpnam, but does not specify the use of P_tmpdir. The System V Interface
Definition (Issue 2) requires both tmpnam and tempnam.
Supporting OS subroutines required: close, fstat, getpid, isatty, lseek, open, read,
sbrk, write.
The global pointer environ is also required.

98 Cygnus C Support Library, Full

3.39 vprintf, vfprintf, vsprintf—format argument list

Synopsis
#include <stdio.h>
#include <stdarg.h>
int vprintf(const char *fmt, va_list list);
int vfprintf(FILE *fp, const char *fmt, va_list list);
int vsprintf(char *str, const char *fmt, va_list list);
int vsnprintf(char *str, size_t size, const char *fmt, va_list list);

int _vprintf_r(void *reent, const char *fmt,
va_list list);

int _vfprintf_r(void *reent, FILE *fp, const char *fmt,
va_list list);

int _vsprintf_r(void *reent, char *str, const char *fmt,
va_list list);

int _vsnprintf_r(void *reent, char *str, size_t size, const char *fmt,
va_list list);

Description
vprintf, vfprintf, vsprintf and vsnprintf are (respectively) variants of printf,
fprintf, sprintf and snprintf. They differ only in allowing their caller to pass the
variable argument list as a va_list object (initialized by va_start) rather than directly
accepting a variable number of arguments.

Returns
The return values are consistent with the corresponding functions: vsprintf returns the
number of bytes in the output string, save that the concluding NULL is not counted. vprintf
and vfprintf return the number of characters transmitted. If an error occurs, vprintf
and vfprintf return EOF. No error returns occur for vsprintf.

Portability
ANSI C requires all three functions.
Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Strings and Memory (‘string.h’) 99

4 Strings and Memory (‘string.h’)

This chapter describes string-handling functions and functions for managing areas of mem-
ory. The corresponding declarations are in ‘string.h’.

100 Cygnus C Support Library, Full

4.1 bcmp—compare two memory areas

Synopsis
#include <string.h>
int bcmp(const char *s1, const char *s2, size_t n);

Description
This function compares not more than n characters of the object pointed to by s1 with the
object pointed to by s2.
This function is identical to memcmp.
Returns
The function returns an integer greater than, equal to or less than zero according to whether
the object pointed to by s1 is greater than, equal to or less than the object pointed to by
s2.

Portability
bcmp requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 101

4.2 bcopy—copy memory regions

Synopsis
#include <string.h>
void bcopy(const char *in, char *out, size_t n);

Description
This function copies n bytes from the memory region pointed to by in to the memory region
pointed to by out.
This function is implemented in term of memmove.

Portability
bcopy requires no supporting OS subroutines.

102 Cygnus C Support Library, Full

4.3 bzero—initialize memory to zero

Synopsis
#include <string.h>
void bzero(char *b, size_t length);

Description
bzero initializes length bytes of memory, starting at address b, to zero.

Returns
bzero does not return a result.

Portability
bzero is in the Berkeley Software Distribution. Neither ANSI C nor the System V Interface
Definition (Issue 2) require bzero.
bzero requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 103

4.4 index—search for character in string

Synopsis
#include <string.h>
char * index(const char *string, int c);

Description
This function finds the first occurence of c (converted to a char) in the string pointed to by
string (including the terminating null character).
This function is identical to strchr.

Returns
Returns a pointer to the located character, or a null pointer if c does not occur in string.

Portability
index requires no supporting OS subroutines.

104 Cygnus C Support Library, Full

4.5 memchr—find character in memory

Synopsis
#include <string.h>
void *memchr(const void *src, int c, size_t length);

Description
This function searches memory starting at *src for the character c. The search only ends
with the first occurrence of c, or after length characters; in particular, NULL does not
terminate the search.

Returns
If the character c is found within length characters of *src, a pointer to the character is
returned. If c is not found, then NULL is returned.

Portability
memchr> is ANSI C.
memchr requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 105

4.6 memcmp—compare two memory areas

Synopsis
#include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

Description
This function compares not more than n characters of the object pointed to by s1 with the
object pointed to by s2.

Returns
The function returns an integer greater than, equal to or less than zero according to whether
the object pointed to by s1 is greater than, equal to or less than the object pointed to by
s2.

Portability
memcmp is ANSI C.
memcmp requires no supporting OS subroutines.

106 Cygnus C Support Library, Full

4.7 memcpy—copy memory regions

Synopsis
#include <string.h>
void* memcpy(void *out, const void *in, size_t n);

Description
This function copies n bytes from the memory region pointed to by in to the memory region
pointed to by out.
If the regions overlap, the behavior is undefined.

Returns
memcpy returns a pointer to the first byte of the out region.

Portability
memcpy is ANSI C.
memcpy requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 107

4.8 memmove—move possibly overlapping memory

Synopsis
#include <string.h>
void *memmove(void *dst, const void *src, size_t length);

Description
This function moves length characters from the block of memory starting at *src to the
memory starting at *dst. memmove reproduces the characters correctly at *dst even if the
two areas overlap.

Returns
The function returns dst as passed.

Portability
memmove is ANSI C.
memmove requires no supporting OS subroutines.

108 Cygnus C Support Library, Full

4.9 memset—set an area of memory

Synopsis
#include <string.h>
void *memset(const void *dst, int c, size_t length);

Description
This function converts the argument c into an unsigned char and fills the first length char-
acters of the array pointed to by dst to the value.

Returns
memset returns the value of m.

Portability
memset is ANSI C.
memset requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 109

4.10 rindex—reverse search for character in string

Synopsis
#include <string.h>
char * rindex(const char *string, int c);

Description
This function finds the last occurence of c (converted to a char) in the string pointed to by
string (including the terminating null character).
This function is identical to strrchr.

Returns
Returns a pointer to the located character, or a null pointer if c does not occur in string.

Portability
rindex requires no supporting OS subroutines.

110 Cygnus C Support Library, Full

4.11 strcasecmp—case insensitive character string compare

Synopsis
#include <string.h>
int strcasecmp(const char *a, const char *b);

Description
strcasecmp compares the string at a to the string at b in a case-insensitive manner.

Returns

If *a sorts lexicographically after *b (after both are converted to upper case), strcasecmp
returns a number greater than zero. If the two strings match, strcasecmp returns zero. If
*a sorts lexicographically before *b, strcasecmp returns a number less than zero.

Portability
strcasecmp is in the Berkeley Software Distribution.
strcasecmp requires no supporting OS subroutines. It uses tolower() from elsewhere in this
library.

Chapter 4: Strings and Memory (‘string.h’) 111

4.12 strcat—concatenate strings

Synopsis
#include <string.h>
char *strcat(char *dst, const char *src);

Description
strcat appends a copy of the string pointed to by src (including the terminating null
character) to the end of the string pointed to by dst. The initial character of src overwrites
the null character at the end of dst.

Returns
This function returns the initial value of dst

Portability
strcat is ANSI C.
strcat requires no supporting OS subroutines.

112 Cygnus C Support Library, Full

4.13 strchr—search for character in string

Synopsis
#include <string.h>
char * strchr(const char *string, int c);

Description
This function finds the first occurence of c (converted to a char) in the string pointed to by
string (including the terminating null character).

Returns
Returns a pointer to the located character, or a null pointer if c does not occur in string.

Portability
strchr is ANSI C.
strchr requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 113

4.14 strcmp—character string compare

Synopsis
#include <string.h>
int strcmp(const char *a, const char *b);

Description
strcmp compares the string at a to the string at b.

Returns
If *a sorts lexicographically after *b, strcmp returns a number greater than zero. If the two
strings match, strcmp returns zero. If *a sorts lexicographically before *b, strcmp returns
a number less than zero.

Portability
strcmp is ANSI C.
strcmp requires no supporting OS subroutines.

114 Cygnus C Support Library, Full

4.15 strcoll—locale specific character string compare

Synopsis
#include <string.h>
int strcoll(const char *stra, const char * strb);

Description
strcoll compares the string pointed to by stra to the string pointed to by strb, using an
interpretation appropriate to the current LC_COLLATE state.

Returns
If the first string is greater than the second string, strcoll returns a number greater than
zero. If the two strings are equivalent, strcoll returns zero. If the first string is less than
the second string, strcoll returns a number less than zero.

Portability
strcoll is ANSI C.
strcoll requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 115

4.16 strcpy—copy string

Synopsis
#include <string.h>
char *strcpy(char *dst, const char *src);

Description
strcpy copies the string pointed to by src (including the terminating null character) to the
array pointed to by dst.

Returns
This function returns the initial value of dst.

Portability
strcpy is ANSI C.
strcpy requires no supporting OS subroutines.

116 Cygnus C Support Library, Full

4.17 strcspn—count chars not in string

Synopsis
size_t strcspn(const char *s1, const char *s2);

Description
This function computes the length of the initial part of the string pointed to by s1 which
consists entirely of characters NOT from the string pointed to by s2 (excluding the termi-
nating null character).

Returns
strcspn returns the length of the substring found.

Portability
strcspn is ANSI C.
strcspn requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 117

4.18 strerror—convert error number to string

Synopsis
#include <string.h>
char *strerror(int errnum);

Description
strerror converts the error number errnum into a string. The value of errnum is usually a
copy of errno. If errnum is not a known error number, the result points to an empty string.
This implementation of strerror prints out the following strings for each of the values
defined in ‘errno.h’:

E2BIG Arg list too long

EACCES Permission denied

EADDRINUSE
Address already in use

EADV Advertise error

EAFNOSUPPORT
Address family not supported by protocol family

EAGAIN No more processes

EALREADY Socket already connected

EBADF Bad file number

EBADMSG Bad message

EBUSY Device or resource busy

ECHILD No children

ECOMM Communication error

ECONNABORTED
Software caused connection abort

ECONNREFUSED
Connection refused

EDEADLK Deadlock

EDESTADDRREQ
Destination address required

EEXIST File exists

EDOM Math argument

EFAULT Bad address

EFBIG File too large

EHOSTDOWN
Host is down

118 Cygnus C Support Library, Full

EHOSTUNREACH
Host is unreachable

EIDRM Identifier removed

EINPROGRESS
Connection already in progress

EINTR Interrupted system call

EINVAL Invalid argument

EIO I/O error

EISCONN Socket is already connected

EISDIR Is a directory

ELIBACC Cannot access a needed shared library

ELIBBAD Accessing a corrupted shared library

ELIBEXEC Cannot exec a shared library directly

ELIBMAX Attempting to link in more shared libraries than system limit

ELIBSCN .lib section in a.out corrupted

EMFILE Too many open files

EMLINK Too many links

EMSGSIZE Message too long

EMULTIHOP
Multihop attempted

ENAMETOOLONG
File or path name too long

ENETDOWN Network interface not configured

ENETUNREACH
Network is unreachable

ENFILE Too many open files in system

ENODEV No such device

ENOENT No such file or directory

ENOEXEC Exec format error

ENOLCK No lock

ENOLINK Virtual circuit is gone

ENOMEM Not enough space

ENOMSG No message of desired type

ENONET Machine is not on the network

Chapter 4: Strings and Memory (‘string.h’) 119

ENOPKG No package

ENOPROTOOPT
Protocol not available

ENOSPC No space left on device

ENOSR No stream resources

ENOSTR Not a stream

ENOSYS Function not implemented

ENOTBLK Block device required

ENOTCONN Socket is not connected

ENOTDIR Not a directory

ENOTEMPTY
Directory not empty

ENOTSOCK Socket operation on non-socket

ENOTSUP Not supported

ENOTTY Not a character device

ENXIO No such device or address

EPERM Not owner

EPIPE Broken pipe

EPROTO Protocol error

EPROTOTYPE
Protocol wrong type for socket

EPROTONOSUPPORT
Unknown protocol

ERANGE Result too large

EREMOTE Resource is remote

EROFS Read-only file system

ESHUTDOWN
Can’t send after socket shutdown

ESOCKTNOSUPPORT
Socket type not supported

ESPIPE Illegal seek

ESRCH No such process

ESRMNT Srmount error

ETIME Stream ioctl timeout

120 Cygnus C Support Library, Full

ETIMEDOUT
Connection timed out

ETXTBSY Text file busy

EXDEV Cross-device link

Returns
This function returns a pointer to a string. Your application must not modify that string.

Portability
ANSI C requires strerror, but does not specify the strings used for each error number.
Although this implementation of strerror is reentrant, ANSI C declares that subsequent
calls to strerror may overwrite the result string; therefore portable code cannot depend
on the reentrancy of this subroutine.
This implementation of strerror provides for user-defined extensibility. errno.h defines

ELASTERROR, which can be used as a base for user-defined error values. If the user
supplies a routine named _user_strerror, and errnum passed to strerror does not match
any of the supported values, _user_strerror is called with errnum as its argument.
_user_strerror takes one argument of type int, and returns a character pointer. If er-
rnum is unknown to _user_strerror, _user_strerror returns NULL. The default _user_
strerror returns NULL for all input values.
strerror requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 121

4.19 strlen—character string length

Synopsis
#include <string.h>
size_t strlen(const char *str);

Description
The strlen function works out the length of the string starting at *str by counting charar-
acters until it reaches a NULL character.

Returns
strlen returns the character count.

Portability
strlen is ANSI C.
strlen requires no supporting OS subroutines.

122 Cygnus C Support Library, Full

4.20 strlwr—force string to lower case

Synopsis
#include <string.h>
char *strlwr(char *a);

Description
strlwr converts each characters in the string at a to lower case.

Returns
strlwr returns its argument, a.

Portability
strlwr is not widely portable.
strlwr requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 123

4.21 strncasecmp—case insensitive character string compare

Synopsis
#include <string.h>
int strncasecmp(const char *a, const char * b, size_t length);

Description
strncasecmp compares up to length characters from the string at a to the string at b in a
case-insensitive manner.

Returns

If *a sorts lexicographically after *b (after both are converted to upper case), strncasecmp
returns a number greater than zero. If the two strings are equivalent, strncasecmp returns
zero. If *a sorts lexicographically before *b, strncasecmp returns a number less than zero.

Portability
strncasecmp is in the Berkeley Software Distribution.
strncasecmp requires no supporting OS subroutines. It uses tolower() from elsewhere in
this library.

124 Cygnus C Support Library, Full

4.22 strncat—concatenate strings

Synopsis
#include <string.h>
char *strncat(char *dst, const char *src, size_t length);

Description
strncat appends not more than length characters from the string pointed to by src (in-
cluding the terminating null character) to the end of the string pointed to by dst. The
initial character of src overwrites the null character at the end of dst. A terminating null
character is always appended to the result

Warnings
Note that a null is always appended, so that if the copy is limited by the length argument,
the number of characters appended to dst is n + 1.
Returns
This function returns the initial value of dst

Portability
strncat is ANSI C.
strncat requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 125

4.23 strncmp—character string compare

Synopsis
#include <string.h>
int strncmp(const char *a, const char * b, size_t length);

Description
strncmp compares up to length characters from the string at a to the string at b.

Returns
If *a sorts lexicographically after *b, strncmp returns a number greater than zero. If the
two strings are equivalent, strncmp returns zero. If *a sorts lexicographically before *b,
strncmp returns a number less than zero.

Portability
strncmp is ANSI C.
strncmp requires no supporting OS subroutines.

126 Cygnus C Support Library, Full

4.24 strncpy—counted copy string

Synopsis
#include <string.h>
char *strncpy(char *dst, const char *src, size_t length);

Description
strncpy copies not more than length characters from the the string pointed to by src
(including the terminating null character) to the array pointed to by dst. If the string
pointed to by src is shorter than length characters, null characters are appended to the
destination array until a total of length characters have been written.

Returns
This function returns the initial value of dst.

Portability
strncpy is ANSI C.
strncpy requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 127

4.25 strpbrk—find chars in string

Synopsis
#include <string.h>
char *strpbrk(const char *s1, const char *s2);

Description
This function locates the first occurence in the string pointed to by s1 of any character in
string pointed to by s2 (excluding the terminating null character).

Returns
strpbrk returns a pointer to the character found in s1, or a null pointer if no character
from s2 occurs in s1.

Portability
strpbrk requires no supporting OS subroutines.

128 Cygnus C Support Library, Full

4.26 strrchr—reverse search for character in string

Synopsis
#include <string.h>
char * strrchr(const char *string, int c);

Description
This function finds the last occurence of c (converted to a char) in the string pointed to by
string (including the terminating null character).

Returns
Returns a pointer to the located character, or a null pointer if c does not occur in string.

Portability
strrchr is ANSI C.
strrchr requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 129

4.27 strspn—find initial match

Synopsis
#include <string.h>
size_t strspn(const char *s1, const char *s2);

Description
This function computes the length of the initial segment of the string pointed to by s1 which
consists entirely of characters from the string pointed to by s2 (excluding the terminating
null character).

Returns
strspn returns the length of the segment found.

Portability
strspn is ANSI C.
strspn requires no supporting OS subroutines.

130 Cygnus C Support Library, Full

4.28 strstr—find string segment

Synopsis
#include <string.h>
char *strstr(const char *s1, const char *s2);

Description
Locates the first occurence in the string pointed to by s1 of the sequence of characters in
the string pointed to by s2 (excluding the terminating null character).

Returns
Returns a pointer to the located string segment, or a null pointer if the string s2 is not
found. If s2 points to a string with zero length, the s1 is returned.

Portability
strstr is ANSI C.
strstr requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 131

4.29 strtok—get next token from a string

Synopsis
#include <string.h>
char *strtok(char *source, const char *delimiters)
char *strtok_r(char *source, const char *delimiters,

char **lasts)

Description
The strtok function is used to isolate sequential tokens in a null-terminated string, *source.
These tokens are delimited in the string by at least one of the characters in *delimiters.
The first time that strtok is called, *source should be specified; subsequent calls, wishing
to obtain further tokens from the same string, should pass a null pointer instead. The
separator string, *delimiters, must be supplied each time, and may change between calls.
The strtok function returns a pointer to the beginning of each subsequent token in the
string, after replacing the separator character itself with a NUL character. When no more
tokens remain, a null pointer is returned.
The strtok_r function has the same behavior as strtok, except a pointer to placeholder
*[lasts> must be supplied by the caller.

Returns
strtok returns a pointer to the next token, or NULL if no more tokens can be found.

Portability
strtok is ANSI C.
strtok requires no supporting OS subroutines.

132 Cygnus C Support Library, Full

4.30 strupr—force string to uppercase

Synopsis
#include <string.h>
char *strupr(char *a);

Description
strupr converts each characters in the string at a to upper case.

Returns
strupr returns its argument, a.

Portability
strupr is not widely portable.
strupr requires no supporting OS subroutines.

Chapter 4: Strings and Memory (‘string.h’) 133

4.31 strxfrm—transform string

Synopsis
#include <string.h>
size_t strxfrm(char *s1, const char *s2, size_t n);

Description
This function transforms the string pointed to by s2 and places the resulting string into the
array pointed to by s1. The transformation is such that if the strcmp function is applied
to the two transformed strings, it returns a value greater than, equal to, or less than zero,
correspoinding to the result of a strcoll function applied to the same two original strings.
No more than n characters are placed into the resulting array pointed to by s1, including
the terminating null character. If n is zero, s1 may be a null pointer. If copying takes place
between objects that overlap, the behavior is undefined.
With a C locale, this function just copies.

Returns
The strxfrm function returns the length of the transformed string (not including the termi-
nating null character). If the value returned is n or more, the contents of the array pointed
to by s1 are indeterminate.

Portability
strxfrm is ANSI C.
strxfrm requires no supporting OS subroutines.

134 Cygnus C Support Library, Full

Chapter 5: Signal Handling (‘signal.h’) 135

5 Signal Handling (‘signal.h’)

A signal is an event that interrupts the normal flow of control in your program. Your
operating environment normally defines the full set of signals available (see ‘sys/signal.h’),
as well as the default means of dealing with them—typically, either printing an error message
and aborting your program, or ignoring the signal.
All systems support at least the following signals:

SIGABRT Abnormal termination of a program; raised by the <<abort>> function.

SIGFPE A domain error in arithmetic, such as overflow, or division by zero.

SIGILL Attempt to execute as a function data that is not executable.

SIGINT Interrupt; an interactive attention signal.

SIGSEGV An attempt to access a memory location that is not available.

SIGTERM A request that your program end execution.

Two functions are available for dealing with asynchronous signals—one to allow your pro-
gram to send signals to itself (this is called raising a signal), and one to specify subroutines
(called handlers to handle particular signals that you anticipate may occur—whether raised
by your own program or the operating environment.
To support these functions, ‘signal.h’ defines three macros:

SIG_DFL Used with the signal function in place of a pointer to a handler subroutine, to
select the operating environment’s default handling of a signal.

SIG_IGN Used with the signal function in place of a pointer to a handler, to ignore a
particular signal.

SIG_ERR Returned by the signal function in place of a pointer to a handler, to indicate
that your request to set up a handler could not be honored for some reason.

‘signal.h’ also defines an integral type, sig_atomic_t. This type is not used in any
function declarations; it exists only to allow your signal handlers to declare a static storage
location where they may store a signal value. (Static storage is not otherwise reliable from
signal handlers.)

136 Cygnus C Support Library, Full

5.1 raise—send a signal

Synopsis
#include <signal.h>
int raise(int sig);

int _raise_r(void *reent, int sig);

Description
Send the signal sig (one of the macros from ‘sys/signal.h’). This interrupts your program’s
normal flow of execution, and allows a signal handler (if you’ve defined one, using signal)
to take control.
The alternate function _raise_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
The result is 0 if sig was successfully raised, 1 otherwise. However, the return value (since
it depends on the normal flow of execution) may not be visible, unless the signal handler
for sig terminates with a return or unless SIG_IGN is in effect for this signal.

Portability
ANSI C requires raise, but allows the full set of signal numbers to vary from one imple-
mentation to another.
Required OS subroutines: getpid, kill.

Chapter 5: Signal Handling (‘signal.h’) 137

5.2 signal—specify handler subroutine for a signal

Synopsis
#include <signal.h>
void (* signal(int sig, void(*func)(int)))(int);

void (* _signal_r(void *reent,
int sig, void(*func)(int)))(int);

int raise (int sig);

int _raise_r (void *reent, int sig);

Description
signal, raise provide a simple signal/raise implementation for embedded targets.

signal allows you to request changed treatment for a particular signal sig. You can use one
of the predefined macros SIG_DFL (select system default handling) or SIG_IGN (ignore this
signal) as the value of func; otherwise, func is a function pointer that identifies a subroutine
in your program as the handler for this signal.

Some of the execution environment for signal handlers is unpredictable; notably, the only
library function required to work correctly from within a signal handler is signal itself,
and only when used to redefine the handler for the current signal value.

Static storage is likewise unreliable for signal handlers, with one exception: if you declare
a static storage location as ‘volatile sig_atomic_t’, then you may use that location in a
signal handler to store signal values.

If your signal handler terminates using return (or implicit return), your program’s execution
continues at the point where it was when the signal was raised (whether by your program
itself, or by an external event). Signal handlers can also use functions such as exit and
abort to avoid returning.

raise sends the signal sig to the executing program. It returns zero if successful, non-zero
if unsuccessful.

The alternate functions _signal_r, _raise_r are the reentrant versions. The extra argu-
ment reent is a pointer to a reentrancy structure.

Returns
If your request for a signal handler cannot be honored, the result is SIG_ERR; a specific error
number is also recorded in errno.

Otherwise, the result is the previous handler (a function pointer or one of the predefined
macros).

Portability
ANSI C requires raise, signal.

No supporting OS subroutines are required to link with signal, but it will not have any
useful effects, except for software generated signals, without an operating system that can
actually raise exceptions.

138 Cygnus C Support Library, Full

Chapter 6: Time Functions (‘time.h’) 139

6 Time Functions (‘time.h’)

This chapter groups functions used either for reporting on time (elapsed, current, or compute
time) or to perform calculations based on time.
The header file ‘time.h’ defines three types. clock_t and time_t are both used for repre-
sentations of time particularly suitable for arithmetic. (In this implementation, quantities
of type clock_t have the highest resolution possible on your machine, and quantities of type
time_t resolve to seconds.) size_t is also defined if necessary for quantities representing
sizes.
‘time.h’ also defines the structure tm for the traditional representation of Gregorian calen-
dar time as a series of numbers, with the following fields:

tm_sec Seconds.

tm_min Minutes.

tm_hour Hours.

tm_mday Day.

tm_mon Month.

tm_year Year (since 1900).

tm_wday Day of week: the number of days since Sunday.

tm_yday Number of days elapsed since last January 1.

tm_isdst Daylight Savings Time flag: positive means DST in effect, zero means DST not
in effect, negative means no information about DST is available.

140 Cygnus C Support Library, Full

6.1 asctime—format time as string

Synopsis
#include <time.h>
char *asctime(const struct tm *clock);
char *asctime_r(const struct tm *clock, char *buf);

Description
Format the time value at clock into a string of the form

Wed Jun 15 11:38:07 1988\n\0

The string is generated in a static buffer; each call to asctime overwrites the string generated
by previous calls.

Returns
A pointer to the string containing a formatted timestamp.

Portability
ANSI C requires asctime.
asctime requires no supporting OS subroutines.

Chapter 6: Time Functions (‘time.h’) 141

6.2 clock—cumulative processor time

Synopsis
#include <time.h>
clock_t clock(void);

Description
Calculates the best available approximation of the cumulative amount of time used by your
program since it started. To convert the result into seconds, divide by the macro CLOCKS_
PER_SEC.

Returns
The amount of processor time used so far by your program, in units defined by the machine-
dependent macro CLOCKS_PER_SEC. If no measurement is available, the result is -1.

Portability
ANSI C requires clock and CLOCKS_PER_SEC.
Supporting OS subroutine required: times.

142 Cygnus C Support Library, Full

6.3 ctime—convert time to local and format as string

Synopsis
#include <time.h>
char *ctime(time_t clock);
char *ctime_r(time_t clock, char *buf);

Description
Convert the time value at clock to local time (like localtime) and format it into a string
of the form

Wed Jun 15 11:38:07 1988\n\0

(like asctime).

Returns
A pointer to the string containing a formatted timestamp.

Portability
ANSI C requires ctime.
ctime requires no supporting OS subroutines.

Chapter 6: Time Functions (‘time.h’) 143

6.4 difftime—subtract two times

Synopsis
#include <time.h>
double difftime(time_t tim1, time_t tim2);

Description
Subtracts the two times in the arguments: ‘tim1 - tim2’.

Returns
The difference (in seconds) between tim2 and tim1, as a double.

Portability
ANSI C requires difftime, and defines its result to be in seconds in all implementations.
difftime requires no supporting OS subroutines.

144 Cygnus C Support Library, Full

6.5 gmtime—convert time to UTC traditional form

Synopsis
#include <time.h>
struct tm *gmtime(const time_t *clock);
struct tm *gmtime_r(const time_t *clock, struct tm *res);

Description
gmtime assumes the time at clock represents a local time. gmtime converts it to UTC
(Universal Coordinated Time, also known in some countries as GMT, Greenwich Mean
time), then converts the representation from the arithmetic representation to the traditional
representation defined by struct tm.
gmtime constructs the traditional time representation in static storage; each call to gmtime
or localtime will overwrite the information generated by previous calls to either function.

Returns
A pointer to the traditional time representation (struct tm).

Portability
ANSI C requires gmtime.
gmtime requires no supporting OS subroutines.

Chapter 6: Time Functions (‘time.h’) 145

6.6 localtime—convert time to local representation

Synopsis
#include <time.h>
struct tm *localtime(time_t *clock);
struct tm *localtime_r(time_t *clock, struct tm *res);

Description
localtime converts the time at clock into local time, then converts its representation from
the arithmetic representation to the traditional representation defined by struct tm.
localtime constructs the traditional time representation in static storage; each call to
gmtime or localtime will overwrite the information generated by previous calls to either
function.
mktime is the inverse of localtime.

Returns
A pointer to the traditional time representation (struct tm).

Portability
ANSI C requires localtime.
localtime requires no supporting OS subroutines.

146 Cygnus C Support Library, Full

6.7 mktime—convert time to arithmetic representation

Synopsis
#include <time.h>
time_t mktime(struct tm *timp);

Description
mktime assumes the time at timp is a local time, and converts its representation from the
traditional representation defined by struct tm into a representation suitable for arithmetic.
localtime is the inverse of mktime.

Returns
If the contents of the structure at timp do not form a valid calendar time representation,
the result is -1. Otherwise, the result is the time, converted to a time_t value.

Portability
ANSI C requires mktime.
mktime requires no supporting OS subroutines.

Chapter 6: Time Functions (‘time.h’) 147

6.8 strftime—flexible calendar time formatter

Synopsis
#include <time.h>
size_t strftime(char *s, size_t maxsize,

const char *format, const struct tm *timp);

Description
strftime converts a struct tm representation of the time (at timp) into a string, starting
at s and occupying no more than maxsize characters.
You control the format of the output using the string at format. *format can contain two
kinds of specifications: text to be copied literally into the formatted string, and time con-
version specifications. Time conversion specifications are two-character sequences beginning
with ‘%’ (use ‘%%’ to include a percent sign in the output). Each defined conversion specifi-
cation selects a field of calendar time data from *timp, and converts it to a string in one of
the following ways:

%a An abbreviation for the day of the week.

%A The full name for the day of the week.

%b An abbreviation for the month name.

%B The full name of the month.

%c A string representing the complete date and time, in the form
Mon Apr 01 13:13:13 1992

%d The day of the month, formatted with two digits.

%H The hour (on a 24-hour clock), formatted with two digits.

%I The hour (on a 12-hour clock), formatted with two digits.

%j The count of days in the year, formatted with three digits (from ‘001’ to ‘366’).

%m The month number, formatted with two digits.

%M The minute, formatted with two digits.

%p Either ‘AM’ or ‘PM’ as appropriate.

%S The second, formatted with two digits.

%U The week number, formatted with two digits (from ‘00’ to ‘53’; week number
1 is taken as beginning with the first Sunday in a year). See also %W.

%w A single digit representing the day of the week: Sunday is day 0.

%W Another version of the week number: like ‘%U’, but counting week 1 as beginning
with the first Monday in a year.

o %x A string representing the complete date, in a format like
Mon Apr 01 1992

%X A string representing the full time of day (hours, minutes, and seconds), in a
format like

148 Cygnus C Support Library, Full

13:13:13

%y The last two digits of the year.

%Y The full year, formatted with four digits to include the century.

%Z Defined by ANSI C as eliciting the time zone if available; it is not available in
this implementation (which accepts ‘%Z’ but generates no output for it).

%% A single character, ‘%’.

Returns
When the formatted time takes up no more than maxsize characters, the result is the length
of the formatted string. Otherwise, if the formatting operation was abandoned due to lack
of room, the result is 0, and the string starting at s corresponds to just those parts of
*format that could be completely filled in within the maxsize limit.

Portability
ANSI C requires strftime, but does not specify the contents of *s when the formatted
string would require more than maxsize characters.
strftime requires no supporting OS subroutines.

Chapter 6: Time Functions (‘time.h’) 149

6.9 time—get current calendar time (as single number)

Synopsis
#include <time.h>
time_t time(time_t *t);

Description
time looks up the best available representation of the current time and returns it, encoded
as a time_t. It stores the same value at t unless the argument is NULL.

Returns
A -1 result means the current time is not available; otherwise the result represents the
current time.

Portability
ANSI C requires time.
Supporting OS subroutine required: Some implementations require gettimeofday.

150 Cygnus C Support Library, Full

Chapter 7: Locale (‘locale.h’) 151

7 Locale (‘locale.h’)

A locale is the name for a collection of parameters (affecting collating sequences and format-
ting conventions) that may be different depending on location or culture. The "C" locale is
the only one defined in the ANSI C standard.

This is a minimal implementation, supporting only the required ‘‘C’’ value for locale;
strings representing other locales are not honored. (‘‘’’ is also accepted; it represents the
default locale for an implementation, here equivalent to ‘‘C’’.

‘locale.h’ defines the structure lconv to collect the information on a locale, with the
following fields:

char *decimal_point
The decimal point character used to format “ordinary” numbers (all numbers
except those referring to amounts of money). ‘‘.’’ in the C locale.

char *thousands_sep
The character (if any) used to separate groups of digits, when formatting ordi-
nary numbers. ‘‘’’ in the C locale.

char *grouping
Specifications for how many digits to group (if any grouping is done at all)
when formatting ordinary numbers. The numeric value of each character in
the string represents the number of digits for the next group, and a value of
0 (that is, the string’s trailing NULL) means to continue grouping digits using
the last value specified. Use CHAR_MAX to indicate that no further grouping is
desired. ‘‘’’ in the C locale.

char *int_curr_symbol
The international currency symbol (first three characters), if any, and the char-
acter used to separate it from numbers. ‘‘’’ in the C locale.

char *currency_symbol
The local currency symbol, if any. ‘‘’’ in the C locale.

char *mon_decimal_point
The symbol used to delimit fractions in amounts of money. ‘‘’’ in the C locale.

char *mon_thousands_sep
Similar to thousands_sep, but used for amounts of money. ‘‘’’ in the C
locale.

char *mon_grouping
Similar to grouping, but used for amounts of money. ‘‘’’ in the C locale.

char *positive_sign
A string to flag positive amounts of money when formatting. ‘‘’’ in the C
locale.

char *negative_sign
A string to flag negative amounts of money when formatting. ‘‘’’ in the C
locale.

152 Cygnus C Support Library, Full

char int_frac_digits
The number of digits to display when formatting amounts of money to inter-
national conventions. CHAR_MAX (the largest number representable as a char)
in the C locale.

char frac_digits
The number of digits to display when formatting amounts of money to local
conventions. CHAR_MAX in the C locale.

char p_cs_precedes
1 indicates the local currency symbol is used before a positive or zero formatted
amount of money; 0 indicates the currency symbol is placed after the formatted
number. CHAR_MAX in the C locale.

char p_sep_by_space
1 indicates the local currency symbol must be separated from positive or zero
numbers by a space; 0 indicates that it is immediately adjacent to numbers.
CHAR_MAX in the C locale.

char n_cs_precedes
1 indicates the local currency symbol is used before a negative formatted amount
of money; 0 indicates the currency symbol is placed after the formatted number.
CHAR_MAX in the C locale.

char n_sep_by_space
1 indicates the local currency symbol must be separated from negative numbers
by a space; 0 indicates that it is immediately adjacent to numbers. CHAR_MAX
in the C locale.

char p_sign_posn
Controls the position of the positive sign for numbers representing money. 0
means parentheses surround the number; 1 means the sign is placed before both
the number and the currency symbol; 2 means the sign is placed after both the
number and the currency symbol; 3 means the sign is placed just before the
currency symbol; and 4 means the sign is placed just after the currency symbol.
CHAR_MAX in the C locale.

char n_sign_posn
Controls the position of the negative sign for numbers representing money, using
the same rules as p_sign_posn. CHAR_MAX in the C locale.

Chapter 7: Locale (‘locale.h’) 153

7.1 setlocale, localeconv—select or query locale

Synopsis
#include <locale.h>
char *setlocale(int category, const char *locale);
lconv *localeconv(void);

char *_setlocale_r(void *reent,
int category, const char *locale);

lconv *_localeconv_r(void *reent);

Description
setlocale is the facility defined by ANSI C to condition the execution environment for
international collating and formatting information; localeconv reports on the settings of
the current locale.
This is a minimal implementation, supporting only the required ‘‘C’’ value for locale;
strings representing other locales are not honored unless MB CAPABLE is defined in which
case three new extensions are allowed for LC CTYPE only: ’’C-JIS’’, ’’C-EUCJP’’, and
’’C-SJIS’’. (‘‘’’ is also accepted; it represents the default locale for an implementation,
here equivalent to ‘‘C’’.)
If you use NULL as the locale argument, setlocale returns a pointer to the string repre-
senting the current locale (always ‘‘C’’ in this implementation). The acceptable values for
category are defined in ‘locale.h’ as macros beginning with "LC_", but this implementation
does not check the values you pass in the category argument.
localeconv returns a pointer to a structure (also defined in ‘locale.h’) describing the
locale-specific conventions currently in effect.
_localeconv_r and _setlocale_r are reentrant versions of localeconv and setlocale
respectively. The extra argument reent is a pointer to a reentrancy structure.

Returns
setlocale returns either a pointer to a string naming the locale currently in effect (always
‘‘C’’ for this implementation, or, if the locale request cannot be honored, NULL.
localeconv returns a pointer to a structure of type lconv, which describes the formatting
and collating conventions in effect (in this implementation, always those of the C locale).

Portability
ANSI C requires setlocale, but the only locale required across all implementations is the
C locale.
No supporting OS subroutines are required.

154 Cygnus C Support Library, Full

Chapter 8: Reentrancy 155

8 Reentrancy

Reentrancy is a characteristic of library functions which allows multiple processes to use
the same address space with assurance that the values stored in those spaces will remain
constant between calls. Cygnus’s implementation of the library functions ensures that
whenever possible, these library functions are reentrant. However, there are some functions
that can not be trivially made reentrant. Hooks have been provided to allow you to use
these functions in a fully reentrant fashion.
These hooks use the structure _reent defined in ‘reent.h’. A variable defined as ‘struct
_reent’ is called a reentrancy structure. All functions which must manipulate global in-
formation are available in two versions. The first version has the usual name, and uses a
single global instance of the reentrancy structure. The second has a different name, nor-
mally formed by prepending ‘_’ and appending ‘_r’, and takes a pointer to the particular
reentrancy structure to use.
For example, the function fopen takes two arguments, file and mode, and uses the global
reentrancy structure. The function _fopen_r takes the arguments, struct reent, which is a
pointer to an instance of the reentrancy structure, file and mode.
Each function which uses the global reentrancy structure uses the global variable _impure_
ptr, which points to a reentrancy structure.
This means that you have two ways to achieve reentrancy. Both require that each thread
of execution control initialize a unique global variable of type ‘struct _reent’:
1. Use the reentrant versions of the library functions, after initializing a global reentrancy

structure for each process. Use the pointer to this structure as the extra argument for
all library functions.

2. Ensure that each thread of execution control has a pointer to its own unique reentrancy
structure in the global variable _impure_ptr, and call the standard library subroutines.

The following functions are provided in both reentrant and non-reentrant versions.
Equivalent for errno variable:

_errno_r

Locale functions:
_localeconv_r _setlocale_r

Equivalents for stdio variables:
_stdin_r _stdout_r _stderr_r

156 Cygnus C Support Library, Full

Stdio functions:
_fdopen_r _perror_r _tempnam_r
_fopen_r _putchar_r _tmpnam_r
_getchar_r _puts_r _tmpfile_r
_gets_r _remove_r _vfprintf_r
_iprintf_r _rename_r _vsnprintf_r
_mkstemp_r _snprintf_r _vsprintf_r
_mktemp_t _sprintf_r

Signal functions:
_init_signal_r _signal_r
_kill_r __sigtramp_r
_raise_r

Stdlib functions:
_calloc_r _mblen_r _srand_r
_dtoa_r _mbstowcs_r _strtod_r
_free_r _mbtowc_r _strtol_r
_getenv_r _memalign_r _strtoul_r
_mallinfo_r _mstats_r _system_r
_malloc_r _rand_r _wcstombs_r
_malloc_r _realloc_r _wctomb_r
_malloc_stats_r _setenv_r

String functions:
_strtok_r

System functions:
_close_r _link_r _unlink_r
_execve_r _lseek_r _wait_r
_fcntl_r _open_r _write_r
_fork_r _read_r
_fstat_r _sbrk_r
_gettimeofday_r _stat_r
_getpid_r _times_r

Time function:
_asctime_r

Chapter 9: Miscellaneous Macros and Functions 157

9 Miscellaneous Macros and Functions

This chapter describes miscellaneous routines not covered elsewhere.

158 Cygnus C Support Library, Full

9.1 unctrl—translate characters to upper case

Synopsis
#include <unctrl.h>
char *unctrl(int c);
int unctrllen(int c);

Description
unctrl is a macro which returns the printable representation of c as a string. unctrllen
is a macro which returns the length of the printable representation of c.

Returns
unctrl returns a string of the printable representation of c.
unctrllen returns the length of the string which is the printable representation of c.

Portability
unctrl and unctrllen are not ANSI C.
No supporting OS subroutines are required.

Chapter 10: System Calls 159

10 System Calls

The C subroutine library depends on a handful of subroutine calls for operating system
services. If you use the C library on a system that complies with the POSIX.1 standard
(also known as IEEE 1003.1), most of these subroutines are supplied with your operating
system.
If some of these subroutines are not provided with your system—in the extreme case, if
you are developing software for a “bare board” system, without an OS—you will at least
need to provide do-nothing stubs (or subroutines with minimal functionality) to allow your
programs to link with the subroutines in libc.a.

10.1 Definitions for OS interface

This is the complete set of system definitions (primarily subroutines) required; the examples
shown implement the minimal functionality required to allow libc to link, and fail gracefully
where OS services are not available.
Graceful failure is permitted by returning an error code. A minor complication arises
here: the C library must be compatible with development environments that supply fully
functional versions of these subroutines. Such environments usually return error codes in
a global errno. However, the Cygnus C library provides a macro definition for errno
in the header file ‘errno.h’, as part of its support for reentrant routines (see Chapter 8
[Reentrancy], page 155).
The bridge between these two interpretations of errno is straightforward: the C library
routines with OS interface calls capture the errno values returned globally, and record
them in the appropriate field of the reentrancy structure (so that you can query them using
the errno macro from ‘errno.h’).
This mechanism becomes visible when you write stub routines for OS interfaces. You must
include ‘errno.h’, then disable the macro, like this:

#include <errno.h>
#undef errno
extern int errno;

The examples in this chapter include this treatment of errno.

_exit Exit a program without cleaning up files. If your system doesn’t provide this,
it is best to avoid linking with subroutines that require it (exit, system).

close Close a file. Minimal implementation:
int close(int file){

return -1;
}

environ A pointer to a list of environment variables and their values. For a minimal
environment, this empty list is adequate:

char *__env[1] = { 0 };
char **environ = __env;

execve Transfer control to a new process. Minimal implementation (for a system with-
out processes):

160 Cygnus C Support Library, Full

#include <errno.h>
#undef errno
extern int errno;
int execve(char *name, char **argv, char **env){
errno=ENOMEM;
return -1;

}

fork Create a new process. Minimal implementation (for a system without pro-
cesses):

#include <errno.h>
#undef errno
extern int errno;
int fork() {
errno=EAGAIN;
return -1;

}

fstat Status of an open file. For consistency with other minimal implementations
in these examples, all files are regarded as character special devices. The
‘sys/stat.h’ header file required is distributed in the ‘include’ subdirectory
for this C library.

#include <sys/stat.h>
int fstat(int file, struct stat *st) {

st->st_mode = S_IFCHR;
return 0;

}

getpid Process-ID; this is sometimes used to generate strings unlikely to conflict with
other processes. Minimal implementation, for a system without processes:

int getpid() {
return 1;

}

isatty Query whether output stream is a terminal. For consistency with the other
minimal implementations, which only support output to stdout, this minimal
implementation is suggested:

int isatty(int file){
return 1;

}

kill Send a signal. Minimal implementation:
#include <errno.h>
#undef errno
extern int errno;
int kill(int pid, int sig){
errno=EINVAL;
return(-1);

}

link Establish a new name for an existing file. Minimal implementation:

Chapter 10: System Calls 161

#include <errno.h>
#undef errno
extern int errno;
int link(char *old, char *new){
errno=EMLINK;
return -1;

}

lseek Set position in a file. Minimal implementation:
int lseek(int file, int ptr, int dir){

return 0;
}

read Read from a file. Minimal implementation:
int read(int file, char *ptr, int len){

return 0;
}

sbrk Increase program data space. As malloc and related functions depend on this,
it is useful to have a working implementation. The following suffices for a
standalone system; it exploits the symbol end automatically defined by the
GNU linker.

caddr_t sbrk(int incr){
extern char end; /* Defined by the linker */
static char *heap_end;
char *prev_heap_end;

if (heap_end == 0) {
heap_end = &end;

}
prev_heap_end = heap_end;
if (heap_end + incr > stack_ptr)
{

_write (1, "Heap and stack collision\n", 25);
abort ();

}

heap_end += incr;
return (caddr_t) prev_heap_end;

}

stat Status of a file (by name). Minimal implementation:
int stat(char *file, struct stat *st) {

st->st_mode = S_IFCHR;
return 0;

}

times Timing information for current process. Minimal implementation:
int times(struct tms *buf){

return -1;
}

162 Cygnus C Support Library, Full

unlink Remove a file’s directory entry. Minimal implementation:
#include <errno.h>
#undef errno
extern int errno;
int unlink(char *name){
errno=ENOENT;
return -1;

}

wait Wait for a child process. Minimal implementation:
#include <errno.h>
#undef errno
extern int errno;
int wait(int *status) {
errno=ECHILD;
return -1;

}

write Write a character to a file. ‘libc’ subroutines will use this system routine for
output to all files, including stdout—so if you need to generate any output, for
example to a serial port for debugging, you should make your minimal write
capable of doing this. The following minimal implementation is an incomplete
example; it relies on a writechar subroutine (not shown; typically, you must
write this in assembler from examples provided by your hardware manufacturer)
to actually perform the output.

int write(int file, char *ptr, int len){
int todo;

for (todo = 0; todo < len; todo++) {
writechar(*ptr++);

}
return len;

}

Chapter 10: System Calls 163

10.2 Reentrant covers for OS subroutines

Since the system subroutines are used by other library routines that require reentrancy,
‘libc.a’ provides cover routines (for example, the reentrant version of fork is _fork_r).
These cover routines are consistent with the other reentrant subroutines in this library,
and achieve reentrancy by using a reserved global data block (see Chapter 8 [Reentrancy],
page 155).

_open_r A reentrant version of open. It takes a pointer to the global data block, which
holds errno.

int _open_r(void *reent,
const char *file, int flags, int mode);

_close_r A reentrant version of close. It takes a pointer to the global data block, which
holds errno.

int _close_r(void *reent, int fd);

_lseek_r A reentrant version of lseek. It takes a pointer to the global data block, which
holds errno.

off_t _lseek_r(void *reent,
int fd, off_t pos, int whence);

_read_r A reentrant version of read. It takes a pointer to the global data block, which
holds errno.

long _read_r(void *reent,
int fd, void *buf, size_t cnt);

_write_r A reentrant version of write. It takes a pointer to the global data block, which
holds errno.

long _write_r(void *reent,
int fd, const void *buf, size_t cnt);

_fork_r A reentrant version of fork. It takes a pointer to the global data block, which
holds errno.

int _fork_r(void *reent);

_wait_r A reentrant version of wait. It takes a pointer to the global data block, which
holds errno.

int _wait_r(void *reent, int *status);

_stat_r A reentrant version of stat. It takes a pointer to the global data block, which
holds errno.

int _stat_r(void *reent,
const char *file, struct stat *pstat);

_fstat_r A reentrant version of fstat. It takes a pointer to the global data block, which
holds errno.

int _fstat_r(void *reent,
int fd, struct stat *pstat);

164 Cygnus C Support Library, Full

_link_r A reentrant version of link. It takes a pointer to the global data block, which
holds errno.

int _link_r(void *reent,
const char *old, const char *new);

_unlink_r
A reentrant version of unlink. It takes a pointer to the global data block, which
holds errno.

int _unlink_r(void *reent, const char *file);

_sbrk_r A reentrant version of sbrk. It takes a pointer to the global data block, which
holds errno.

char *_sbrk_r(void *reent, size_t incr);

Chapter 11: Variable Argument Lists 165

11 Variable Argument Lists

The printf family of functions is defined to accept a variable number of arguments, rather
than a fixed argument list. You can define your own functions with a variable argument
list, by using macro definitions from either ‘stdarg.h’ (for compatibility with ANSI C) or
from ‘varargs.h’ (for compatibility with a popular convention prior to ANSI C).

11.1 ANSI-standard macros, ‘stdarg.h’

In ANSI C, a function has a variable number of arguments when its parameter list ends
in an ellipsis (...). The parameter list must also include at least one explicitly named
argument; that argument is used to initialize the variable list data structure.
ANSI C defines three macros (va_start, va_arg, and va_end) to operate on variable argu-
ment lists. ‘stdarg.h’ also defines a special type to represent variable argument lists: this
type is called va_list.

166 Cygnus C Support Library, Full

11.1.1 Initialize variable argument list

Synopsis
#include <stdarg.h>
void va_start(va_list ap, rightmost);

Description
Use va_start to initialize the variable argument list ap, so that va_arg can extract values
from it. rightmost is the name of the last explicit argument in the parameter list (the
argument immediately preceding the ellipsis ‘...’ that flags variable arguments in an ANSI
C function header). You can only use va_start in a function declared using this ellipsis
notation (not, for example, in one of its subfunctions).
Returns
va_start does not return a result.
Portability
ANSI C requires va_start.

Chapter 11: Variable Argument Lists 167

11.1.2 Extract a value from argument list

Synopsis
#include <stdarg.h>
type va_arg(va_list ap, type);

Description
va_arg returns the next unprocessed value from a variable argument list ap (which you must
previously create with va start). Specify the type for the value as the second parameter to
the macro, type.
You may pass a va_list object ap to a subfunction, and use va_arg from the subfunction
rather than from the function actually declared with an ellipsis in the header; however,
in that case you may only use va_arg from the subfunction. ANSI C does not permit
extracting successive values from a single variable-argument list from different levels of the
calling stack.
There is no mechanism for testing whether there is actually a next argument available; you
might instead pass an argument count (or some other data that implies an argument count)
as one of the fixed arguments in your function call.
Returns
va_arg returns the next argument, an object of type type.
Portability
ANSI C requires va_arg.

168 Cygnus C Support Library, Full

11.1.3 Abandon a variable argument list

Synopsis
#include <stdarg.h>
void va_end(va_list ap);

Description
Use va_end to declare that your program will not use the variable argument list ap any
further.
Returns
va_end does not return a result.
Portability
ANSI C requires va_end.

11.2 Traditional macros, ‘varargs.h’

If your C compiler predates ANSI C, you may still be able to use variable argument lists
using the macros from the ‘varargs.h’ header file. These macros resemble their ANSI
counterparts, but have important differences in usage. In particular, since traditional C has
no declaration mechanism for variable argument lists, two additional macros are provided
simply for the purpose of defining functions with variable argument lists.
As with ‘stdarg.h’, the type va_list is used to hold a data structure representing a
variable argument list.

Chapter 11: Variable Argument Lists 169

11.2.1 Declare variable arguments

Synopsis
#include <varargs.h>
function(va_alist)
va_dcl

Description
To use the ‘varargs.h’ version of variable argument lists, you must declare your function
with a call to the macro va_alist as its argument list, and use va_dcl as the declaration.
Do not use a semicolon after va_dcl.
Returns
These macros cannot be used in a context where a return is syntactically possible.
Portability
va alist and va dcl were the most widespread method of declaring variable argument lists
prior to ANSI C.

170 Cygnus C Support Library, Full

11.2.2 Initialize variable argument list

Synopsis
#include <varargs.h>
va_list ap;
va_start(ap);

Description
With the ‘varargs.h’ macros, use va_start to initialize a data structure ap to permit
manipulating a variable argument list. ap must have the type va alist.
Returns
va_start does not return a result.
Portability
va_start is also defined as a macro in ANSI C, but the definitions are incompatible; the
ANSI version has another parameter besides ap.

Chapter 11: Variable Argument Lists 171

11.2.3 Extract a value from argument list

Synopsis
#include <varargs.h>
type va_arg(va_list ap, type);

Description
va_arg returns the next unprocessed value from a variable argument list ap (which you must
previously create with va start). Specify the type for the value as the second parameter to
the macro, type.
Returns
va_arg returns the next argument, an object of type type.
Portability
The va_arg defined in ‘varargs.h’ has the same syntax and usage as the ANSI C version
from ‘stdarg.h’.

172 Cygnus C Support Library, Full

11.2.4 Abandon a variable argument list

Synopsis
#include <varargs.h>
va_end(va_list ap);

Description
Use va_end to declare that your program will not use the variable argument list ap any
further.
Returns
va_end does not return a result.
Portability
The va_end defined in ‘varargs.h’ has the same syntax and usage as the ANSI C version
from ‘stdarg.h’.

Index 173

Index

__env_lock . 14
__env_unlock . 14
__malloc_lock . 22
__malloc_unlock . 22
_asctime_r . 140
_calloc_r. 9
_close_r . 163
_exit . 159
_fdopen_r . 65
_fopen_r . 63
_fork_r . 163
_free_r . 19
_fstat_r . 163
_getchar_r . 75
_gets_r . 76
_impure_ptr . 155
_link_r . 164
_localeconv_r . 153
_lseek_r . 163
_mallinfo_r . 21
_malloc_r . 19
_malloc_stats_r . 21
_malloc_usable_size_r . 19
_mallopt_r . 21
_memalign_r . 19
_mkstemp_r . 78
_mktemp_r . 78
_open_r . 163
_perror_r . 79
_putchar_r . 81
_puts_r . 82
_raise_r . 136, 137
_read_r . 163
_realloc_r . 19
_reent . 155
_rename_r . 84
_sbrk_r . 164
_setlocale_r . 153
_signal_r . 137
_stat_r . 163
_strtod_r . 28
_strtol_r . 29
_strtoul_r . 31
_system_r . 33
_tempnam_r . 97
_tmpfile_r . 96
_tmpnam_r . 97
_tolower . 50
_toupper . 51
_unlink_r . 164
_wait_r . 163

_write_r . 163

A

abort . 2

abs . 3

asctime . 140

assert . 4

atexit . 5

atof . 6

atoff . 6

atoi . 7

atol . 7

B

bcmp . 100

bsearch . 8

bzero . 102

C

calloc . 9

clearerr . 54

clock . 141

close . 159

ctime . 142

D

difftime . 143

div . 10

E

ecvt . 11

ecvtbuf . 13

environ . 16, 159

errno global vs macro . 159

execve . 159

exit . 15

extra argument, reentrant fns 155

174 Cygnus C Support Library, Full

F
fclose . 55
fcvt . 11
fcvtbuf . 13
fdopen . 65
feof . 56
ferror . 57
fflush . 58
fgetc . 59
fgetpos . 60
fgets . 61
fiprintf . 62
fopen . 63
fork . 160
fprintf . 89
fputc . 66
fputs . 67
fread . 68
free . 19
freopen . 69
fscanf . 92
fseek . 70
fsetpos . 71
fstat . 160
ftell . 72
fwrite . 73

G
gcvt . 12
gcvtf . 12
getc . 74
getchar . 75
getenv . 16
getpid . 160
gets . 76
global reentrancy structure 155
gmtime . 144

I
index . 103
iprintf . 77
isalnum . 38
isalpha . 39
isascii . 40
isatty . 160
iscntrl . 41
isdigit . 42
isgraph . 44
islower . 43
isprint . 44

ispunct . 45

isspace . 46

isupper . 47

isxdigit . 48

K
kill . 160

L
labs . 17

ldiv . 18

link . 160

linking the C library . 159

list of reentrant functions . 155

localeconv . 153

localtime . 145

lseek . 161

M
mallinfo . 21

malloc . 19

malloc_stats . 21

malloc_usable_size . 19

mallopt . 21

mblen . 23

mbstowcs . 24

mbtowc . 25

memalign . 19

memchr . 104

memcmp . 105

memmove . 107

memset . 108

mkstemp . 78

mktemp . 78

mktime . 146

O
OS interface subroutines . 159

P
perror . 79

printf . 89

putc . 80

putchar . 81

puts . 82

Index 175

Q
qsort . 26

R
raise . 136, 137
rand . 27
rand_r . 27
read . 161
realloc . 19
reent.h . 155
reentrancy . 155
reentrancy structure . 155
reentrant function list . 155
remove . 83
rename . 84
rewind . 85
rindex . 109

S
sbrk . 161
scanf . 92
setbuf . 86
setlocale . 153
setvbuf . 87
signal . 137
siprintf . 88
snprintf . 89
sprintf . 89
srand . 27
sscanf . 92
stat . 161
strcasecmp . 110
strcat . 111
strchr . 112
strcmp . 113
strcoll . 114
strcpy . 115
strcspn . 116
strerror . 117
strftime . 147
strlen . 121
strlwr . 122
strncasecmp . 123
strncat . 124
strncmp . 125
strncpy . 126
strpbrk . 127
strrchr . 128

strspn . 129
strstr . 130
strtod . 28
strtodf . 28
strtok . 131
strtok_r . 131
strtol . 29
strtoul . 31
strupr . 132
strxfrm . 133
stubs . 159
subroutines for OS interface 159
system . 33

T
tempnam . 97
time . 149
times . 161
tmpfile . 96
tmpnam . 97
toascii . 49
tolower . 50
toupper . 51

U
unctrl . 158
unctrllen . 158
unlink . 162

V
va_alist . 169
va_arg . 167, 171
va_dcl . 169
va_end . 168, 172
va_start . 166, 170
vfprintf . 98
vprintf . 98
vsnprintf . 98
vsprintf . 98

W
wait . 162
wcstombs . 34
wctomb . 35
write . 162

176 Cygnus C Support Library, Full

The body of this manual is set in
cmr10 at 10.95pt,

with headings in cmb10 at 10.95pt
and examples in cmtt10 at 10.95pt.

cmti10 at 10.95pt and
cmsl10 at 10.95pt

are used for emphasis.

i

Table of Contents

1 Standard Utility Functions (‘stdlib.h’) 1
1.1 abort—abnormal termination of a program 2
1.2 abs—integer absolute value (magnitude) 3
1.3 assert—Macro for Debugging Diagnostics 4
1.4 atexit—request execution of functions at program exit 5
1.5 atof, atoff—string to double or float . 6
1.6 atoi, atol—string to integer . 7
1.7 bsearch—binary search . 8
1.8 calloc—allocate space for arrays . 9
1.9 div—divide two integers . 10
1.10 ecvt,ecvtf,fcvt,fcvtf—double or float to string 11
1.11 gvcvt, gcvtf—format double or float as string 12
1.12 ecvtbuf, fcvtbuf—double or float to string 13
1.13 __env_lock, __env_unlock–lock environ variable 14
1.14 exit—end program execution . 15
1.15 getenv—look up environment variable 16
1.16 labs—long integer absolute value . 17
1.17 ldiv—divide two long integers . 18
1.18 malloc, realloc, free—manage memory 19
1.19 mallinfo, malloc_stats, mallopt–malloc support 21
1.20 __malloc_lock, __malloc_unlock–lock malloc pool 22
1.21 mblen—minimal multibyte length function 23
1.22 mbstowcs—minimal multibyte string to wide char converter

. 24
1.23 mbtowc—minimal multibyte to wide char converter 25
1.24 qsort—sort an array . 26
1.25 rand, srand—pseudo-random numbers 27
1.26 strtod, strtodf—string to double or float 28
1.27 strtol—string to long . 29
1.28 strtoul—string to unsigned long . 31
1.29 system—execute command string . 33
1.30 wcstombs—minimal wide char string to multibyte string

converter . 34
1.31 wctomb—minimal wide char to multibyte converter 35

2 Character Type Macros and Functions
(‘ctype.h’) . 37
2.1 isalnum—alphanumeric character predicate 38
2.2 isalpha—alphabetic character predicate 39
2.3 isascii—ASCII character predicate. 40
2.4 iscntrl—control character predicate . 41
2.5 isdigit—decimal digit predicate . 42
2.6 islower—lower-case character predicate 43

ii Cygnus C Support Library, Full

2.7 isprint, isgraph—printable character predicates 44
2.8 ispunct—punctuation character predicate 45
2.9 isspace—whitespace character predicate 46
2.10 isupper—uppercase character predicate 47
2.11 isxdigit—hexadecimal digit predicate 48
2.12 toascii—force integers to ASCII range 49
2.13 tolower—translate characters to lower case 50
2.14 toupper—translate characters to upper case 51

3 Input and Output (‘stdio.h’) 53
3.1 clearerr—clear file or stream error indicator 54
3.2 fclose—close a file . 55
3.3 feof—test for end of file . 56
3.4 ferror—test whether read/write error has occurred 57
3.5 fflush—flush buffered file output . 58
3.6 fgetc—get a character from a file or stream 59
3.7 fgetpos—record position in a stream or file 60
3.8 fgets—get character string from a file or stream 61
3.9 fiprintf—format output to file (integer only) 62
3.10 fopen—open a file . 63
3.11 fdopen—turn open file into a stream 65
3.12 fputc—write a character on a stream or file 66
3.13 fputs—write a character string in a file or stream 67
3.14 fread—read array elements from a file 68
3.15 freopen—open a file using an existing file descriptor 69
3.16 fseek—set file position . 70
3.17 fsetpos—restore position of a stream or file 71
3.18 ftell—return position in a stream or file 72
3.19 fwrite—write array elements . 73
3.20 getc—read a character (macro) . 74
3.21 getchar—read a character (macro) . 75
3.22 gets—get character string (obsolete, use fgets instead) . . 76
3.23 iprintf—write formatted output (integer only) 77
3.24 mktemp, mkstemp—generate unused file name 78
3.25 perror—print an error message on standard error 79
3.26 putc—write a character (macro) . 80
3.27 putchar—write a character (macro) . 81
3.28 puts—write a character string . 82
3.29 remove—delete a file’s name . 83
3.30 rename—rename a file . 84
3.31 rewind—reinitialize a file or stream . 85
3.32 setbuf—specify full buffering for a file or stream 86
3.33 setvbuf—specify file or stream buffering 87
3.34 siprintf—write formatted output (integer only) 88
3.35 printf, fprintf, sprintf, snprintf—format output . . . 89
3.36 scanf, fscanf, sscanf—scan and format input 92
3.37 tmpfile—create a temporary file . 96
3.38 tmpnam, tempnam—name for a temporary file 97

iii

3.39 vprintf, vfprintf, vsprintf—format argument list 98

4 Strings and Memory (‘string.h’). 99
4.1 bcmp—compare two memory areas . 100
4.2 bcopy—copy memory regions . 101
4.3 bzero—initialize memory to zero . 102
4.4 index—search for character in string 103
4.5 memchr—find character in memory . 104
4.6 memcmp—compare two memory areas 105
4.7 memcpy—copy memory regions . 106
4.8 memmove—move possibly overlapping memory 107
4.9 memset—set an area of memory . 108
4.10 rindex—reverse search for character in string 109
4.11 strcasecmp—case insensitive character string compare . . 110
4.12 strcat—concatenate strings . 111
4.13 strchr—search for character in string 112
4.14 strcmp—character string compare . 113
4.15 strcoll—locale specific character string compare 114
4.16 strcpy—copy string. 115
4.17 strcspn—count chars not in string . 116
4.18 strerror—convert error number to string 117
4.19 strlen—character string length . 121
4.20 strlwr—force string to lower case . 122
4.21 strncasecmp—case insensitive character string compare

. 123
4.22 strncat—concatenate strings . 124
4.23 strncmp—character string compare . 125
4.24 strncpy—counted copy string. 126
4.25 strpbrk—find chars in string . 127
4.26 strrchr—reverse search for character in string 128
4.27 strspn—find initial match . 129
4.28 strstr—find string segment . 130
4.29 strtok—get next token from a string 131
4.30 strupr—force string to uppercase . 132
4.31 strxfrm—transform string . 133

5 Signal Handling (‘signal.h’) 135
5.1 raise—send a signal . 136
5.2 signal—specify handler subroutine for a signal 137

iv Cygnus C Support Library, Full

6 Time Functions (‘time.h’) 139
6.1 asctime—format time as string . 140
6.2 clock—cumulative processor time . 141
6.3 ctime—convert time to local and format as string 142
6.4 difftime—subtract two times . 143
6.5 gmtime—convert time to UTC traditional form 144
6.6 localtime—convert time to local representation 145
6.7 mktime—convert time to arithmetic representation 146
6.8 strftime—flexible calendar time formatter 147
6.9 time—get current calendar time (as single number) 149

7 Locale (‘locale.h’) . 151
7.1 setlocale, localeconv—select or query locale 153

8 Reentrancy . 155

9 Miscellaneous Macros and Functions 157
9.1 unctrl—translate characters to upper case 158

10 System Calls . 159
10.1 Definitions for OS interface . 159
10.2 Reentrant covers for OS subroutines 163

11 Variable Argument Lists 165
11.1 ANSI-standard macros, ‘stdarg.h’ . 165

11.1.1 Initialize variable argument list 166
11.1.2 Extract a value from argument list 167
11.1.3 Abandon a variable argument list 168

11.2 Traditional macros, ‘varargs.h’ . 168
11.2.1 Declare variable arguments 169
11.2.2 Initialize variable argument list 170
11.2.3 Extract a value from argument list 171
11.2.4 Abandon a variable argument list 172

Index . 173

	Standard Utility Functions (stdlib.h)
	abort---abnormal termination of a program
	abs---integer absolute value (magnitude)
	assert---Macro for Debugging Diagnostics
	atexit---request execution of functions at program exit
	atof, atoff---string to double or float
	atoi, atol---string to integer
	bsearch---binary search
	calloc---allocate space for arrays
	div---divide two integers
	ecvt,ecvtf,fcvt,fcvtf---double or float to string
	gvcvt, gcvtf---format double or float as string
	ecvtbuf, fcvtbuf---double or float to string
	@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}env@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}lock, @unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}env@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}unlock--lock environ variable
	exit---end program execution
	getenv---look up environment variable
	labs---long integer absolute value
	ldiv---divide two long integers
	malloc, realloc, free---manage memory
	mallinfo, malloc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}stats, mallopt--malloc support
	@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}malloc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}lock, @unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}malloc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}unlock--lock malloc pool
	mblen---minimal multibyte length function
	mbstowcs---minimal multibyte string to wide char converter
	mbtowc---minimal multibyte to wide char converter
	qsort---sort an array
	rand, srand---pseudo-random numbers
	strtod, strtodf---string to double or float
	strtol---string to long
	strtoul---string to unsigned long
	system---execute command string
	wcstombs---minimal wide char string to multibyte string converter
	wctomb---minimal wide char to multibyte converter

	Character Type Macros and Functions (ctype.h)
	isalnum---alphanumeric character predicate
	isalpha---alphabetic character predicate
	isascii---ASCII character predicate
	iscntrl---control character predicate
	isdigit---decimal digit predicate
	islower---lower-case character predicate
	isprint, isgraph---printable character predicates
	ispunct---punctuation character predicate
	isspace---whitespace character predicate
	isupper---uppercase character predicate
	isxdigit---hexadecimal digit predicate
	toascii---force integers to ASCII range
	tolower---translate characters to lower case
	toupper---translate characters to upper case

	Input and Output (stdio.h)
	clearerr---clear file or stream error indicator
	fclose---close a file
	feof---test for end of file
	ferror---test whether read/write error has occurred
	fflush---flush buffered file output
	fgetc---get a character from a file or stream
	fgetpos---record position in a stream or file
	fgets---get character string from a file or stream
	fiprintf---format output to file (integer only)
	fopen---open a file
	fdopen---turn open file into a stream
	fputc---write a character on a stream or file
	fputs---write a character string in a file or stream
	fread---read array elements from a file
	freopen---open a file using an existing file descriptor
	fseek---set file position
	fsetpos---restore position of a stream or file
	ftell---return position in a stream or file
	fwrite---write array elements
	getc---read a character (macro)
	getchar---read a character (macro)
	gets---get character string (obsolete, use fgets instead)
	iprintf---write formatted output (integer only)
	mktemp, mkstemp---generate unused file name
	perror---print an error message on standard error
	putc---write a character (macro)
	putchar---write a character (macro)
	puts---write a character string
	remove---delete a file's name
	rename---rename a file
	rewind---reinitialize a file or stream
	setbuf---specify full buffering for a file or stream
	setvbuf---specify file or stream buffering
	siprintf---write formatted output (integer only)
	printf, fprintf, sprintf, snprintf---format output
	scanf, fscanf, sscanf---scan and format input
	tmpfile---create a temporary file
	tmpnam, tempnam---name for a temporary file
	vprintf, vfprintf, vsprintf---format argument list

	Strings and Memory (string.h)
	bcmp---compare two memory areas
	bcopy---copy memory regions
	bzero---initialize memory to zero
	index---search for character in string
	memchr---find character in memory
	memcmp---compare two memory areas
	memcpy---copy memory regions
	memmove---move possibly overlapping memory
	memset---set an area of memory
	rindex---reverse search for character in string
	strcasecmp---case insensitive character string compare
	strcat---concatenate strings
	strchr---search for character in string
	strcmp---character string compare
	strcoll---locale specific character string compare
	strcpy---copy string
	strcspn---count chars not in string
	strerror---convert error number to string
	strlen---character string length
	strlwr---force string to lower case
	strncasecmp---case insensitive character string compare
	strncat---concatenate strings
	strncmp---character string compare
	strncpy---counted copy string
	strpbrk---find chars in string
	strrchr---reverse search for character in string
	strspn---find initial match
	strstr---find string segment
	strtok---get next token from a string
	strupr---force string to uppercase
	strxfrm---transform string

	Signal Handling (signal.h)
	raise---send a signal
	signal---specify handler subroutine for a signal

	Time Functions (time.h)
	asctime---format time as string
	clock---cumulative processor time
	ctime---convert time to local and format as string
	difftime---subtract two times
	gmtime---convert time to UTC traditional form
	localtime---convert time to local representation
	mktime---convert time to arithmetic representation
	strftime---flexible calendar time formatter
	time---get current calendar time (as single number)

	Locale (locale.h)
	setlocale, localeconv---select or query locale

	Reentrancy
	Miscellaneous Macros and Functions
	unctrl---translate characters to upper case

	System Calls
	Definitions for OS interface
	Reentrant covers for OS subroutines

	Variable Argument Lists
	ANSI-standard macros, stdarg.h
	Initialize variable argument list
	Extract a value from argument list
	Abandon a variable argument list

	Traditional macros, varargs.h
	Declare variable arguments
	Initialize variable argument list
	Extract a value from argument list
	Abandon a variable argument list

	Index

