
.
. .

MidiShare Library

Player Library 2.0

GRAME Research Lab.
9, rue du Garet - BP 1185

69202 LYON CEDEX 01 France
Ph: +33 (0)4 72 07 37 00 Fax: +33 (0)4 72 07 37 01

http://www.grame.fr

e-mail : grame@rd.grame.fr

GRAME

Summary

Introduction .. 1
About this manual... 2
Introduction... 3
Overview of a Player.. 4

Opening and Closing a Player.. 4
Transport control : playback... 4
Transport control : recording... 6
Synchronization management.. 6
Tracks management... 7
Position management ... 7
Events Chase.. 7
Loop management ... 8
State management.. 8
Midifile management.. 8

Some examples ... 9
Example 1 : Opening and closing a Player............................... 9
Example 2 : Loading and Playing a MIDIfile........................ 10
Example 3 : Recording a score and save it as a MIDIfile..... 11

Reference.. 13
Constants.. 14
Data Types .. 16
Error Codes... 18
BackwardStepPlayer... 19
ClosePlayer... 20
ContPlayer.. 21
ForwardStepPlayer ... 22
GetAllTrackPlayer .. 23
GetEndScorePlayer ... 25
GetParamPlayer... 26
GetStatePlayer.. 27
GetTrackPlayer .. 28
MidiFileLoad ... 29
MidiFileSave ... 30
OpenPlayer... 32
PausePlayer .. 34
RecordPlayer.. 35
SetAllTrackPlayer... 36
SetLoopEndBBUPlayer.. 37
SetLoopEndMsPlayer... 38
SetLoopPlayer.. 39
SetLoopStartBBUPlayer... 40
SetLoopStartMsPlayer.. 41

SetParamPlayer... 42
SetPosBBUPlayer.. 43
SetPosMsPlayer... 44
SetRecordFilterPlayer.. 45
SetRecordModePlayer ... 46
SetSMPTEOffsetPlayer... 47
SetSynchroInPlayer.. 48
SetSynchroOutPlayer... 50
SetTempoPlayer.. 51
SetTrackPlayer... 52
StartPlayer.. 53
StopPlayer .. 54

 1

Introduction

2

About this manual
This manual is intended for developers who want to add a sequencer
component in their application using the Player library. It contains a
complete description of all the library functions and data structures, as
well as several examples of code. This library is available on Macintosh
and PC/Windows (as a DLL).

 3

Introduction
The Player library is provided to allow the development of a complete
multi-tracks MidiShare sequencer. Each Player is a MidiShare
application, has 256 tracks, four different synchronization mode, events
chase and loop markers. A Player use MidiShare sequences. Functions
are provided to read on write MIDIfiles and convert them to the
MidiShare sequence format.

4

Overview of a Player
This section gives an overview of the Player library functions.

Opening and Closing a Player

A new empty Player is opened using the OpenPlayer function which
gives as result the reference number of the corresponding MidiShare
application. This reference number will be used for all the Player
functions. An empty Player use by default a tempo of 120 bpm, a 4/4 time
signature and a tick_per_quarter value of 500 so that 1 tick (the internal
time unit) correspond exactly to 1 ms. MidiShare sequences will be
loaded into a Player using the SetAllTrackPlayer function. A
MidiShare sequence contains usually a tempo-map track which will be
used instead of the default tempo and time signature values.
After it's creation, the Player should be connected to the MIDI
input/output (that is to the MidiShare application), but because the
Player is manipulated using it's MidiShare reference number, it's
possible to use some MidiShare functions to manipulate it : a Player can
be connected to other players or MidiShare applications using
MidiConnect, the name of a Player can be accessed an changed using
MidiGetName/MidiSetName functions...
The Player will be closed using the ClosePlayer function.
ClosePlayer frees the Player internal score and close the MidiShare
application.

Transport control : playback

A Player has the usual transport control:
-StartPlayer starts from the beginning of the score.
-PausePlayer stops the Player without sending the pending events
(key-off, sustain off ..)
-ContPlayer plays from the current position.
-StopPlayer stops the Player and send the chased events (key-off...)
-ForwardStepPlayer plays the following chord and take care of
solo/muted tracks state.
-BackwardStepPlayer plays the previous chord and take care of
solo/muted track state.

 5

The Player's running state can be accessed at any time using the
GetStatePlayer function. The state can be one of the following:
kIdle, kPause, kRecording, kPlaying or kWaiting. The Player
is in kWaiting mode when waiting for synchronization.

6

Transport control : recording

To begin a new recording, one must first select a track in record mode
using the RecordPlayer function and then start the Player (from the
beginning or from the current position). During the recording, the
incoming events are stored in the selected track. A recording can be
done in two mode :
-kMixMode : recorded events are mixed in the recording track.
-kEraseMode : the track is first deleted and recorded events are then
inserted in the track.
The recording state will be controlled with the SetRecordModePlayer
function. A record filter can be installed for the Player using the
SetRecordFilterPlayer function.

Synchronization management

A Player can be in four different synchronization modes which can be
changed using the SetSynchroInPlayer function:
-kInternalSync mode: The Player uses it's internal tempo-map which
is on the track 0.
-kClockSync mode: The Player recognizes synchronization events at it's
input and can be driven by Start, Stop, Continue, Clock and SongPos
events.
-kSMPTESync mode: This is a global synchronization mode for all
MidiShare applications. A SMPTE offset can be set, and the Player will
automatically starts when the SMPTE offset is reached. The Player will
stop when incoming MTC disappears.
-kExternalSync mode: The Player does not use it's internal Tempo
Map anymore, recognizes incoming Tempo events and the internal
tempo can be changed with the SetTempo function.
By default, a Player is in kInternalSync mode.

A Player can be used as a master to synchronize other Players or others
s y n c h r o n i z a b l e M i d i S h a r e a p p l i c a t i o n s u s i n g t h e
SetSynchroOutPlayer function. The Player will send Start, Stop,
Continue, Song Position and Clock events. By default, a Player is in
kNoSyncOut mode.

 7

Tracks management

Each Player contains a unique internal score where all tracks are mixed.
A Player has 256 tracks which can be individually accessed, changed and
recorded. Tracks are internally distinguish by the reference number of
events which are on them. This means that all events of track 0 have a
reference number of 0, all events on track 1 have a reference number of 1
and so on. When loading a multi-tracks MIDIFile (format 1 or 2) the
different tracks of the MIDIfile are automatically dispatched on tracks of
the MidiShare sequence. If one wants to set a new multi-tracks sequence
in a Player, the different tracks must have different reference numbers.
A new MidiShare sequence is loaded into the Player using the functions
SetAllTrackPlayer or SetTrackPlayer. Internal tracks can be
extracted (for example to be saved as MIDIfiles) using
GetAllTrackPlayer or GetTrackPlayer functions.
By using the function SetParamTrackPlayer, each track can be muted
or played solo. The track 0 is use for the tempo map and should be
managed carefully.

Position management

The position in a score in managed internally using a tick unit. The
position will be manipulated either with musical time (bar, beat, unit) or
real-time (hours, min, sec, millisec). The Player's current position can be
changed using the SetPosMsPlayer to access the real-time or
SetPosBBUPlayer to access the musical time in bar, beat, unit.

Events Chase

Chase Events makes sure that a Player is playing the correct patch
regardless of the position in which the track was started. To do that, the
Player keeps internally the whole state of program change, volume, pan
or other controller information which are inserted in the tracks. This
state in automatically updated when the Player moves in both
directions. Chase Events can then re-send MIDI events that occurred
previously in the tracks.

8

The following types of events are chased: program-change, controller
(volumes, sustain..), pitch-bend, channel pressure, key pressure and
tune.

Loop management

Loop markers can be set using SetLoopStartMsPlayer,
SetLoopEndMsPlayer , SetLoopStartBBUPlayer and
SetLoopEndBBUPlayer functions (even during playback) and loop
mode will be switch on/off using SetLoopPlayer.

State management

For displaying purpose, the GetStatePlayer function allows to read
the internal state of the Player (position in millisecond and musical
time, tempo, time signature) at any time. An application typically call
this function at regular interval (using a MidiShare task or in it's event
loop) to display the current state. The function GetEndScore allows to
read various information about the score last position.

Midifile management

Two functions, MidifileLoad and MidifileSave allow to read and
write MIDIfiles and convert them to MidiShare sequence format. When
loading a multi-tracks MIDIfile, the different tracks of the MIDIfile will
correspond to different tracks of the MidiShare sequence.

 9

Some examples
We give here some simple examples of the use of the Player library.
They where written for the Macintosh but they can be easily adapted for
other computers. The specific differences with the Macintosh is that the
string arguments to some Players functions are in Pascal format (starting
with \p like in Ò\pExample1Ó). If you run these examples on another
computer, you need to remove the \p.

Example 1 : Opening and closing a Player

Program 1 opens a new empty Player using the OpenPlayer function,
connect it to the Midi Output, then closes the Player using the
ClosePlayer function, thatÕs all.

Listing 1

#include <Player.h>

main()
{

short myRefNum;

myRefNum = OpenPlayer("\pExample1");

MidiConnect(myRefNum,0,1);

ClosePlayer(myRefNum);
}

10

Example 2 : Loading and Playing a MIDIfile

Now an example using a MIDIfile, assuming that we have a MIDIfile
whose filename is "HD500:test1", we open a Player with the test1 file,
connect it to the Midi Output, then play the MIDIfile.

Listing 2

#include <stdio.h>
#include <stdlib.h>
#include <Player.h>

main()
{

short myRefNum;
MidiseqPtr mySeq;
MidiFileInfos myInfo;

myRefNum = OpenPlayer("\pExample2");
MidiConnect(myRefNum,0,1);
mySeq = MidiNewSeq();
MidiFileLoad("HD500:midifile1", mySeq, &myInfo);
SetAllTrackPlayer (myRefnum, mySeq, info.clicks);

printf("(type <ENTER> to start playing)\n");
getc(stdin);

StartPlayer(myRefNum);

printf("(type <ENTER> to stop playing)\n");
getc(stdin);

StopPlayer(myRefNum);

ClosePlayer(myRefNum);
}

 11

Example 3 : Recording a score and save it as a MIDIfile

In this example we will open a new Player, connect it to the Midi Input
and the Midi Output, record some events and then save the result as a
MIDIfile.

Listing 3

#include <stdio.h>
#include <stdlib.h>
#include <Player.h>

main()
{

short myRefNum;
MidiseqPtr mySeq, myRecSeq;
MidiFileInfos myInfo;

myRefNum = OpenPlayer("\pExample3");
MidiConnect(myRefNum,0,1);
MidiConnect(0,myRefNum,1);

RecordPlayer (myRefnum, 1); // record on track one

printf("(type <ENTER> to start recording)\n");
getc(stdin);

... play some events...

printf("(type <ENTER> to stop recording)\n");
getc(stdin);

myRecSeq= GetAllTrackPlayer(myRefnum);

myInfo.format = midifile1;
myInfo.timedef = TicksPerQuarterNote;
myInfo.clicks = 500;

MidiFileSave("HD500:test2", myRecSeq, &myInfo);

MidiFreeSeq (myRecSeq);

ClosePlayer(myRefNum);
}

12

 13

Reference

14

Constants

Player state

enum playerstatus {kIdle = 0, kPause, kRecording, kPlaying, kWaiting };

Track control and state

#define kMaxTrack 256
#define kMuteOn 1
#define kMuteOff 0
#define kSoloOn 1
#define kSoloOff 0
enum trackparameter { kMute = 0, kSolo };

Recording state

#define kNoTrack -1
#define kEraseMode 1
#define kMixMode 0

Loop control

enum loop {kLoopOn = 0, kLoopOff};

Step playing control

#define kStepPlay 1
#define kStepMute 0

 15

Synchronisation management

enum rcvsynchro { kInternalSync = 0, kClockSync, kSMPTESync,
kExternalSync };
enum sendsynchro { kNoSyncOut = 0, kClockSyncOut };

MIDIFile management

enum midifiletypes { midifile0 = 0, midifile1, midifile2};

#define TicksPerQuarterNote 0
#define Smpte24 24
#define Smpte25 25
#define Smpte29 29
#define Smpte30 30

16

Data Types
The PlayerState data structure allows to read the internal state of the
Player for displaying purposes.

typedef struct PlayerState* PlayerStatePtr;
typedef struct PlayerState{

long date; /* date in millisecond */
long tempo; /* tempo in microsec/per/quarter-note */
short tsnum; /* time signature */
short tsdenom;
short tsclick;
short tsquarter;
short bar; /* position in musical time */
short beat;
short unit;
short state; /* player state */
short syncin; /* synchronisation IN state */
short syncout; /* synchronisation OUT state */

}PlayerState;

MidiFileInfos data structure must be used when reading and writing
MIDIfile.

typedef struct MidiFileInfos* MidiFileInfosPtr;
typedef struct MidiFileInfos
{

long format; /* file format */
long timedef; /* time definition */
long clicks; /* tick/per/quarter-note */
long tracks; /* number of tracks */

}MidiFileInfos;

TPos data structure allows to provide position in musical time (bar, beat,
unit) to the Player.

 17

typedef struct Pos* PosPtr;
typedef struct Pos{

short bar; /* position in musical time */
short beat;
short unit;

}Pos;

18

Error Codes

Table 1 List of the error codes returned by some Player functions.

Name Code Comment

PLAYERnoErr -1 /* no error */
PLAYERerrAppl -2 /* Unable to open MidiShare application */
PLAYERerrEvent -3 /* No more MidiShare Memory */
PLAYERerrMemory -4 /* No more Memory */
PLAYERerrSequencer -5 /* Player error */

Table 2 List of the error codes returned by MIDIfile functions.

Name Code Comment
NoErr 0 /* no error */
ErrOpen 1 /* file Open error */
ErrRead 2 /* file read error */
ErrWrite 3 /* file write error */
ErrVol 4 /* Volume info volume */
ErrGetInfo 5 /* GetFInfo error */
ErrSetInfo 6 /* SetFInfo error */
ErrMidiFileFormat 7 /* bad MidiFile format */

 19

BackwardStepPlayer

DESCRIPTION
This function allows to implement step playing. BackwardStepPlayer
plays the previous group of notes (notes at the same date) and allows to
move in the score by group of notes. BackwardStepPlayer takes care of
the tracks state (mute or solo mode).

PROTOTYPE
C ANSI void BackwardStepPlayer (short refnum, short state);

ARGUMENTS
refnum : a 16-bit integer, is the reference number of the Player.
state : kStepPlay , kStepMute : event will be played or not.
(Warning : in version 2.0, this argument is no longer used, events will
always be played)

EXAMPLE (ANSI C)
BackwardStepPlayer will be used to implement fast/backward
playing. The function BackwardButton calls BackwardStepPlayer in a
loop while mouse down.

void BackwardButton (refnum)
{

while (gMouseDown){
BackwardStepPlayer (refNum , kStepPlay);
... wait some time...

}

}

See also ForwardStepPlayer.

20

ClosePlayer

DESCRIPTION
Closes a Player given it's reference number. This function automatically
free the internal score and close the MidiShare application.
ClosePlayer can not be called at interrupt level.

PROTOTYPE
C ANSI short ClosePlayer (short refnum);

ARGUMENTS
refnum : a 16-bit integer, is the reference number of the Player.

See also OpenPlayer.

 21

ContPlayer

DESCRIPTION
Starts playing from the current position in the score.

PROTOTYPE
C ANSI void ContPlayer (short refnum);

ARGUMENTS
refnum : a 16-bit integer, is the reference number of the Player.

See also StartPlayer, StopPlayer, PausePlayer.

22

ForwardStepPlayer

DESCRIPTION
This function allows to implement step playing. ForwardStepPlayer
plays the next group of notes (notes at the same date) and allows to
move in the score by group of notes. ForwardStepPlayer takes care of
the tracks state (mute or solo mode).

PROTOTYPE
C ANSI void ForwardStepPlayer (short refnum, short state);

ARGUMENTS
refnum : a 16-bit integer, is the reference number of the Player.
state : kStepPlay , kStepMute : event will be played or not.
(Warning : in version 2.0, this argument is no longer used, events will
always be played)

EXAMPLE (ANSI C)
ForwardStepPlayer will be used to implement fast/forward playing.
The function ForwardButton calls ForwardStepPlayer in a loop while
mouse down.

void ForwardButton (refnum)
{

while (gMouseDown){
ForwardStepPlayer (refNum , kStepPlay);
... wait some time...

}

}

See also BackwardStepPlayer.

 23

GetAllTrackPlayer

DESCRIPTION
Returns all the tracks contained in a Player as a MidiShare sequence. All
tracks are mixed in a unique MidiShare sequence but are distinguish by
the reference number of their events. The returned sequence is a COPY
of the internal score. GetAllTrackPlayer can not be called at interrupt
level.

PROTOTYPE
C ANSI MidiSeqPtr GetAllTrackPlayer (short refnum);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.

RESULT
The result is MidiShare sequence where all tracks are mixed or 0 if the
sequence can not be allocated.

EXAMPLE (ANSI C)
Get all tracks from a Player and save the sequence in a MIDIfile.

void SaveMidiFile (short refNum)
{

MidiSeqPtr mySeq;
MidiFileInfos info;

mySeq= GetAllTrackPlayer(refNum);

myInfo.format = midifile1;
myInfo.timedef = TicksPerQuarterNote;
myInfo.clicks = 500;

MidiFileSave("HD500:test2", mySeq, &myInfo);

MidiFreeSeq(mySeq);

}

24

See also GetTrackPlayer, SetAllTrackPlayer, SetTrackPlayer.

 25

GetEndScorePlayer

DESCRIPTION
Returns information about the last event in the score: position in
musical time and millisecond.

PROTOTYPE
C ANSI void GetEndScorePlayer(short refNum, PlayerStatePtr
state);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
state : a PlayerStatePtr will be filled with information about the last
event in the score : position in (Bar, Beat,Unit) and millisecond.

26

GetParamPlayer

DESCRIPTION
Returns the current value of the parameter solo or mute in a track.

PROTOTYPE
C ANSI short GetParamPlayer(short refNum,short tracknum,short
param);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.

RESULT
A short : is the value of the corresponding parameter.

See also SetParamPlayer.

 27

GetStatePlayer

DESCRIPTION
Returns the state of the Player at the current position. This function is
usually used for state displaying purpose.

PROTOTYPE
C ANSI void GetStatePlayer (short refNum, PlayerStatePtr state);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
state : a PlayerStatePtr will be filled with the state of the Player.

28

GetTrackPlayer

DESCRIPTION
Returns a track contained in a Player as a MidiShare sequence given the
track number. The returned sequence is a COPY of the internal track.
GetTrackPlayer can not be called at interrupt level.

PROTOTYPE
C ANSI MidiSeqPtr GetTrackPlayer (short refnum, short tracknum);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
tracknum : the track number.

RESULT
The result is a MidiShare sequence or 0 if the sequence can not be
allocated.

EXAMPLE (ANSI C)
Get a track from a Player and save the sequence in a MIDIfile.

void SavePlayer (short refNum)
{

MidiSeqPtr mySeq;
MidiFileInfos info;

mySeq= GetTrackPlayer(myRefnum, 1);

myInfo.format = midifile0;
myInfo.timedef = TicksPerQuarterNote;
myInfo.clicks = 500;

MidiFileSave("HD500:test2", mySeq, &myInfo);

 MidiFreeSeq(mySeq);
}

See also GetAllTrackPlayer, SetAllTrackPlayer, SetTrackPlayer.

 29

MidiFileLoad

DESCRIPTION
Load a MIDIfile and convert it into a MidiShare sequence. When loading
a multi-tracks MIDIFile (format 1 or 2) the different tracks of the MIDIfile
are distinguish by the reference number which are on them. It means
that all events of track 0 have a reference number of 0, all events on
track 1 have a reference number of 1 and so on. The function tries to
restore (if possible) the Midi event port number using the InstrName
event which has possibly been written by the MidiFileSave function (see
MidiFileSave).

PROTOTYPE
C ANSI long MidiFileLoad (char * filename, MidiSeqPtr s,

MidiFileInfosPtr info);

ARGUMENTS
filename : a C string, the filename of the MIDIFile.
s : a MidiSeqPtr : the sequence to be loaded.
info : a MidiFileInfosPtr: used to record some information about the
MIDIfile.

RESULT
The result is a MIDIfile error code.

EXAMPLE (ANSI C)
Load a MIDIfile.

void LoadMF()
{

MidiSeqPtr mySeq = MidiNewseq();
MidiFileInfos myInfo;

MidiFileLoad("HD500:midifile1", mySeq, &myInfo);

}

See also MidiFileSave.

30

MidiFileSave

DESCRIPTION
Save a MidiShare sequence in a MIDIfile. When saving a format 1
MIDIfile, the function uses the events reference number to create
different tracks in the MIDIfile. The function always write tracks in
ascending order starting from track 0 (which is the TempoMap). Notes
events are written as a KeyOn/KeyOff pair and EndTrack events are
written automatically. If the sequence does not contain a Tempo Map,
the function writes a default Tempo of 120 bpm and a Time Signature of
4/4. To save the Midi event port number, a InstrName event is included
at the beginning of each track. This event contains the port number
coded as a string like "Port 3" for example. This information will be used
by the MidiFileLoad function to restore (if possible) the Midi event port
number. Note that the port number will be the same for all event on the
same track.

PROTOTYPE
C ANSI long MidiFileSave (char * filename, MidiSeqPtr s,

MidiFileInfosPtr info);

ARGUMENTS
filename : a C string, the filename of the MIDIFile.
s : a MidiSeqPtr : the sequence to be saved.
info : a MidiFileInfosPtr : used to record some information about the
MIDIfile.

RESULT
The result is a MIDIfile error code.

EXAMPLE (ANSI C)
Save a MIDIfile.

void SaveSeq(MidiSeqPtr seq)
{

MidiFileInfos myInfo;

myInfo.format = midifile1;
myInfo.timedef = TicksPerQuarterNote;

 31

myInfo.clicks = 500;

MidiFileSave("HD500:test2", seq, &myInfo);

}

See also MidiFileLoad.

32

OpenPlayer

DESCRIPTION
Opens a new empty Player and give it's MidiShare reference number as
result. The tempo is assumed to be 120 bpm and the internal resolution
is set by default to 500 ticks_per_quarter so that the internal time unit
(tick) correspond exactly to one ms. Sequences will be loaded in a Player
using SetAllTrackPlayer function. Any opened Player should be closed
using the ClosePlayer function. OpenPlayer can not be called at
interrupt level.

PROTOTYPE
C ANSI short OpenPlayer (MidiName playerName);

ARGUMENTS
playerName: the name of the Player that is the name of the
corresponding MidiShare application.

RESULT
The result is a Player reference number.

EXAMPLE 1 (ANSI C)
Opening of a new empty Player.

void Example1 ()
{

short myRefnum;

myRefnum = OpenPlayer ("\pExample1");
....
....

}

 33

EXAMPLE 2 (ANSI C)

Opening of a Player with a MIDIfile.

void Example2 ()
{

short myRefnum;
MidiFileInfos myInfo;

MidiSeqPtr mySeq = MidiNewSeq();
MidiFileLoad("HD500:midifile1", mySeq, &myInfo);

myRefNum = OpenPlayer("\pExample2");

SetAllTrackPlayer (myRefNum , mySeq , myInfo.clicks);
....
....

}

See also ClosePlayer.

34

PausePlayer

DESCRIPTION
Stop a Player without sending the chased events (key-off ...).

PROTOTYPE
C ANSI void PausePlayer (short refnum);

ARGUMENTS
refnum : a 16-bit integer, is the reference number of the Player.

See also StartPlayer, StopPlayer, ContPlayer.

 35

RecordPlayer

DESCRIPTION
Sets a track in record mode. A Player can record in one track at a time.
RecordPlayer called with kNoTrack parameter will disable all recording.
The track being recorded can be changed while recording.

PROTOTYPE
C ANSI void RecordPlayer (short refnum, short tracknum);

ARGUMENTS
refnum : a 16-bit integer, is the reference number of the Player.
tracknum : a 16-bit integer, it is the number of the track to be set in
record mode: from 0 to 255. Parameter kNoTrack will switch off all
recording.

EXAMPLE 1 (ANSI C)
Sets a track in record mode and then start the Player.

void StartRecord (short refnum, short tracknum)
{

RecordPlayer (refnum, tracknum);
StartPlayer(refnum);

}

EXAMPLE 2 (ANSI C)
Stop recording .

void StopAllRecording (short refnum)
{

RecordPlayer (refnum, kNoTrack);

}

See also SetRecordModePlayer.

36

SetAllTrackPlayer

DESCRIPTION
Replaces all tracks of a Player with a new MidiShare sequence. All tracks
are mixed in a unique MidiShare sequence and should be distinguish by
the value of the refnum field of the Midi events .
The MidiShare sequence given as parameter will be internally used. It
means that one must copy it before using SetAllTrackPlayer if one
wants to keep it. SetAllTrackPlayer can not be called at interrupt
level.

PROTOTYPE
C ANSI long SetAllTrackPlayer (short refnum, MidiSeqPtr s,

long tpq);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
s : a MidiSeqPtr, is a pointer on a sequence to be set in the Player.
tpq : tick_per_quarter : the number of ticks per quarter note, usually read
in the MIDIfile header.

EXAMPLE (ANSI C)
Sets a new sequence read from a MIDIfile into an already opened Player.
The sequence is used internally by SetAllTrackPlayer.
short myRefNum;
.....

void SetNewMIDIfile(short refNum, filename)
{

MidiSeqPtr seq;
MidiFileInfos info;

seq = MidiNewSeq();
MidiFileLoad(filename, seq, &info);

SetAllTrackPlayer (refnum, seq, info.clicks);

}

See also GetAllTrackPlayer, GetTrackPlayer, SetTrackPlayer.

 37

SetLoopEndBBUPlayer

DESCRIPTION
Sets the position of the loop end marker with a position given in
musical time (Bar, Beat, Unit). This function can be used when the
Player is moving .

PROTOTYPE
C ANSI long SetLoopEndBBUPlayer (short refnum, PosPtr pos);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
pos : a PosPtr is a pointer to a position in musical time (Bar, Beat, Unit).

RESULT
The result is a Player error code. This error is returned when trying to set
a Loop end marker before a the Loop start marker or a Loop start after a
Loop end marker.

S e e a l s o S e t L o o p E n d M s P l a y e r , S e t L o o p S t a r t M s P l a y e r ,
SetLoopStartBBUPlayer, SetLoopPlayer.

38

SetLoopEndMsPlayer

DESCRIPTION
Sets the position of the loop end marker with a date given in
millisecond. This function can be used when the Player is moving.

PROTOTYPE
C ANSI long SetLoopEndMsPlayer (short refnum long date);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
date : a date in millisecond.

RESULT
The result is a Player error code. This error is returned when trying to set
a Loop end marker before a the Loop start marker or a Loop start after a
Loop end marker.

S e e a l s o S e t L o o p E n d B B U P l a y e r , S e t L o o p S t a r t M s P l a y e r ,
SetLoopStartBBUPlayer, SetLoopPlayer.

 39

SetLoopPlayer

DESCRIPTION
Switch on/off the loop state for the Player.

PROTOTYPE
C ANSI void SetLoopPlayer (short refnum, short state);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
state : kLoopOn or kLoopOff.

See a l s o S e tLoopEndBBUPlayer , S e tLoopEndMsPlaye r ,
SetLoopStartMsPlayer, SetLoopStartBBUPlayer.

40

SetLoopStartBBUPlayer

DESCRIPTION
Sets the position of the loop start marker with a position given in
musical time (Bar, Beat, Unit). This function can be used when the
Player is moving.

PROTOTYPE
C ANSI long SetLoopStartBBUPlayer (short refnum,PosPtr pos);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
pos : a PosPtr is a pointer to a position in musical time (Bar, Beat, Unit).

RESULT
The result is a Player error code. This error is returned when trying to set
a Loop end marker before a the Loop start marker or a Loop start after a
Loop end marker.

See a l s o S e tLoopEndBBUPlayer , S e tLoopEndMsPlaye r ,
SetLoopStartMsPlayer, SetLoopPlayer.

 41

SetLoopStartMsPlayer

DESCRIPTION
Sets the position of the loop start marker with a date given in
millisecond. This function can be used when the Player is moving.

PROTOTYPE
C ANSI long SetLoopStartMsPlayer (short refnum, long date);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
date : a date in millisecond.

RESULT
The result is a Player error code. This error is returned when trying to set
a Loop end marker before a the Loop start marker or a Loop start after a
Loop end marker.

See a l s o S e tLoopEndBBUPlayer , S e tLoopEndMsPlaye r ,
SetLoopStartBBUPlayer, SetLoopPlayer.

42

SetParamPlayer

DESCRIPTION
Sets parameters which define the behavior of a track: a track can be
muted or played solo.

C ANSI void SetparamPlayer (short refNum, short tracknum, short
param, short val);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
tracknum : a 16-bit integer, is the track number to be set.
param : is the parameter to be set (kMute or kSolo).
val : is the value to be set, can be kMuteOn, kMuteOff, kSoloOn or
kSoloOff.

EXAMPLE (ANSI C)
Mute the 10 first tracks.
short myRefNum;
.....

void MuteTracks(short refNum, seq)
{

short i;

for (i = 1 ; i<= 10; i++)
 SetParamPlayer (refnum, i, kMute, kMuteOn);

}

See also GetParamPlayer .

 43

SetPosBBUPlayer

DESCRIPTION
Changes the current position in the score. The new position is given as a
position in musical time (Bar, Beat, Unit). This function can be used
when the Player is moving.

PROTOTYPE
C ANSI void SetPosBBUPlayer (short refnum, PosPtr pos);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
pos : a PosPtr is a pointer to a position in musical time (Bar, Beat, Unit).

EXAMPLE (ANSI C)
Move the Player to the beginning of the 10¡ bar.

void MovePos (short refNum)
{

Pos pos;

pos.bar = 10;
pos.beat = 1;
pos.unit = 1;

SetPosBBUPlayer (refNum, &pos);

}

See also SetPosMsPlayer.

44

SetPosMsPlayer

DESCRIPTION
Changes the current position in the score. The new position is given as a
date in millisecond. This function can be used when the Player is
moving. The conversion between the argument date in ms and the
internal date in ticks is always done using the Tempo Map information
of the Player.

PROTOTYPE
C ANSI void SetPosMsPlayer (short refnum, long date);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
date : a date in millisecond.

EXAMPLE (ANSI C)
Move the Player to the 10 s of the score.

void MovePlayer (short refNum)
{

long date;

date = 10000;

SetPosMsPlayer (refNum, date);

}

See also SetPosBBUPlayer.

 45

SetRecordFilterPlayer

DESCRIPTION
Allows to set a record filter for the Player. Midi events can be filtered by
types, channels and ports. The record filter does not interfere with the
receive filter of the Player.

PROTOTYPE
C ANSI void SetRecordFilterPlayer (short refnum,

FilterPtr filter);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
filter: a MidiShare FilterPtr (defined in MidiShare.h).

EXAMPLE (ANSI C)
Set the filter to record synchronization events.

void SetFilter (FilterPtr filter)
{

AcceptBit(filter->EvType,typeSongPos);
AcceptBit(filter->EvType,typeClock);
AcceptBit(filter->EvType,typeStart);
AcceptBit(filter->EvType,typeContinue);
AcceptBit(filter->EvType,typeStop);

SetRecordFilterPlayer (refNum, filter);
}

46

SetRecordModePlayer

DESCRIPTION
Set the recording mode. A recording can be done in two mode :
- kMixMode : recorded events are mixed in the recorded track.
- kEraseMode : the track is completely deleted and recorded events are
then inserted in the track. By default the recording state is set in
kMixMode.

PROTOTYPE
C ANSI void SetRecordModePlayer (short refnum, short state);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
state : the recording state : can be kEraseMode or kMixMode.

See also RecordPlayer.

 47

SetSMPTEOffsetPlayer

DESCRIPTION
For SMPTE synchronization mode, allows to set a SMPTE offset.

PROTOTYPE
C ANSI void SetSMPTEOffsetPlayer (short refnum, SmpteLocPtr
smptepos);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
smptepos : a MidiShare SmpteLocPtr (defined in MidiShare.h).

48

SetSynchroInPlayer

DESCRIPTION
Set the Player mode of synchronization, a Player can be in four
synchronization mode :

-kInternalSync : the Player uses its internal tempo map
-kClockSync : The Player recognizes MIDI Clock at it's input and can

be driven by Start, Stop, Continue, Clock and SongPos Midi messages.
-kSMPTESync : This is a global synchronization mode for all

MidiShare applications. A SMPTE offset can be set, and the Player will
automatically starts when the SMPTE offset is reached. The Player will
stop when incoming MTC disappears.

-kExternalSync mode: The Player does not use it's internal Tempo
Map anymore, recognizes incoming Tempo events and the internal
tempo can be changed with the SetTempo function.

The synchronization mode can be changed only when the Player is
stopped. By default, the synchronization mode in kInternalSync.

PROTOTYPE
C ANSI void SetSynchroInPlayer (short refnum, short

synchrostate);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
synchrostate : the synchronization state which can be kInternalSync,
kClockSync, kSMPTEsync or kExternalSync .

EXAMPLE (ANSI C)
Set a Player in kClockSync mode.

void SetClockSync (short refNum)
{

SetSynchroInPlayer (refNum , kClockSync);

}

See also SetSynchroOutPlayer .

 49

50

SetSynchroOutPlayer

DESCRIPTION
Set the Player mode of synchronization sending, which can be
kNoSyncOut or kClockSyncOut. In this case start, stop, continue, and
clock Midi messages are sent when the Player is running. By default, the
synchronization mode in kNoSyncOut.

PROTOTYPE
C ANSI void SetSynchroOutPlayer(short refNum, short

synchrostate);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
synchrostate : the synchronization state which can be kNoSyncOut or
kClockSyncOut.

See also SetSynchroInPlayer .

 51

SetTempoPlayer

DESCRIPTION
Allows to change the current tempo when the Player is in
kExternalSync mode. Tempo is a value in micro-sec/per/quarter-note.

PROTOTYPE
C ANSI void SetTempoPlayer(short refNum, long tempo);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
tempo : the new tempo value in micro-sec/per/quarter-note.

52

SetTrackPlayer

DESCRIPTION
Replace a track in a Player with a new MidiShare sequence. The existing
track will be erased before the new track is set.
The MidiShare sequence given as parameter will be internally used. It
means that one must copy it before using SetTrackPlayer if one wants
to keep it. SetTrackPlayer can not be called at interrupt level.

PROTOTYPE
C ANSI long SetTrackPlayer(short refnum, short tracknum,

MidiSeqPtr s);

ARGUMENTS
refNum : a 16-bit integer, is the reference number of the Player.
tracknum : a 16-bit integer, is the track number to be set.
s : a MidiSeqPtr, is a pointer on a sequence to be set in the Player.

RESULT
The result is a Player error code.

EXAMPLE (ANSI C)
Example1 : Set a new sequence into an already opened Player on track 1.
The sequence is used internally by the SetTrackPlayer .

short myRefNum;
.....

void SetTrack(short refNum, seq)
{

SetTrackPlayer (refnum, 1, seq);

}

See also GetAllTrackPlayer, GetTrackPlayer, SetAllTrackPlayer.

 53

StartPlayer

DESCRIPTION
Starts a Player from the beginning of the score.

PROTOTYPE
C ANSI void StartPlayer (short refnum);

ARGUMENTS
refnum : a 16-bit integer, is the reference number of the Player.

See also StopPlayer, ContPlayer, PausePlayer.

54

StopPlayer

DESCRIPTION
Stop a Player and send the chased events (key-off ...)

PROTOTYPE
C ANSI void StopPlayer (short refnum);

ARGUMENTS
refnum : a 16-bit integer, is the reference number of the Player.

See also StartPlayer, ContPlayer, PausePlayer.

Index

BackwardStepPlayer 19
ClosePlayer 20
ContPlayer 21
ForwardStepPlayer 22
GetAllTrackPlayer 23
GetEndScorePlayer 25
GetParamPlayer 26
GetStatePlayer 27
GetTrackPlayer 28
MidiFileLoad 29
MidiFileSave 30
OpenPlayer 32
PausePlayer 34
RecordPlayer 35
SetAllTrackPlayer 36
SetLoopEndBBUPlayer 37
SetLoopEndMsPlayer 38
SetLoopPlayer 39
SetLoopStartBBUPlayer 40
SetLoopStartMsPlayer 41
SetParamPlayer 42
SetPosBBUPlayer 43
SetPosMsPlayer 44
SetRecordFilterPlayer 45
SetRecordModePlayer 46
SetSMPTEOffsetPlayer 47
SetSynchroInPlayer 48
SetSynchroOutPlayer 50
SetTempoPlayer 51
SetTrackPlayer 52
StartPlayer 53

StopPlayer 54

