MOTOROLA Rev.0, 22001

Semiconductor Products Sector Engineering Bulletin

Implementing a 10-Band Stereo Contents
Equalizer on the DSP56311 EVM 1 Filter DESig oo 2
2 Devel t Envi to. 5
Board e o
By Jam M Montgomy W?ndOWS NT® i O 5
2.2 Suiteb6 Parallel Command
COoNVErEr ..., 5

This document describes the devel opment and implementation of 23 Interfacing the PC to the

a10-band stereo equalizer programming example on the o Bssefpir}gletiggl\lﬂngTechmqu% --------- ?
Motorola DSP56311 Evauation Module (EVM). It provides an 3 Implementation of 10-Band

example of how to use readily available development tools to Stereo Equalizer 7
develop complex code for the DSP56311EV M. It aso discusses 3.1 Program Flow and Functiondlity 7
how to program the enhanced filter coprocessor (EFCOP) in 3.1.1 Equalizer Filter and Volume Gain...8
Multichannel mode 3.1.2 Stage 1: DSP Initiaization 10
' 3.1.3 Stage 2: Codec/ESS! Initialization
The DSP56311EVM is alow-cost hardware platform that serves and OPEralion.....vveeesssssssssvvveeeene 10
as a hardware reference design for system and board designers 314 gage; SCl Initialization and »
. . . PEFAION ..o
using thg DSP56311. Itisaso avery erm_bIe platform for 3.1.5 Stage 4: EFCOP Memory
developing DSP56311 code. Software engineers can download Initialization and DMA Setup........ 13
software to on-device or on-board RAM, then run and debug it. 3.1.6 Stage5: Equalizer Knob Value
Initialization.......ccccceveeveveviecennen 17
The DSP56311EVM features: 3.1.7 Stage 6: Set up Registers RO to R7 17

. el e . 3.1.8 Stage 7, 8, 10, and 12: Codec
DSP56311 24-bit digital signal processor OPEIAION oo 18

 FSRAM for expansion memory and flash memory for | 3.1.9 Stage9and 11: Process

stand-alone operation Left/Right Input........._ 19

3.1.10 Stage 13 and 14: Setting Knob

e 16-bit CD-quality audio codec and Main Volume Gain Vaues
. - 4 Equalizer Graphical User @
Command converter circuitry Interface (GUI) 23 %
For details on the DSP56311EVM, consult the DSP56311EVM 4.1 GUI Operation............coocconveenneeens L%
Product Preview (DSP56311EVMP/D) and BEPS63LIEVM | 72 ‘ESOLIJU' | DOEIPMENt o
User's Manua(DSPS6311EVMUM/D). 4.2.2 Frequency Table Form................... g
It is assumed that you already have access to the available 423 ggrrpnm”“'ca'ons Port Settings o
. I AR =o' OO =
Motorgla DSP56311 documentati o_n, which |_s Igcated onthe 5 Usingthe EFCOPin g
following Motorola DSP World Wide Web site: Multichannd Mode ..o S
htt p: // www. not . comf SPS/ DSP/ docunent at i on 5.1 EFCOP REQISIENS..coeonoeeerreee =
5.2 EFCOP Programming for £
Multichannel Mode27 S
5.2.1 FIRFilter TYPE...vvovveveereeerrereereenans £
5.2.2 1IR Filter TYP..wveeerrrerrrerererrrnaee, =
E

5.2.3 Memory Configuration..................
6 Coefficientsand Gain Table

ats
“Digital DNA

© Motorola, Inc. 20001
from Motorola

Filter Design

1 Filter Design

The 10-band stereo equalizer is constructed using 10 digital |IR bandpass filtersin parallel for each stereo
audio channel. The on-board codec samples the incoming audio stream at 48,000 Hz. The center
frequencies for these filters lie between 0 Hz to f¢/2 (where f is the sample frequency of 48,000 Hz).

Figure 1 showsthe passive RCL circuit forming a bandpassfilter. The digital IR Filter discussed later in
this application note is based on this circuit. The s-domain analysis of the second-order bandpass analog
filter is aso shown.

VI O_KW_' Vo
L C R
Yo w
V. . 1
[R+J(2T[f)L+j(2T)C

Figure 1. Analog Bandpass Filter and Voltage Divider Analysis

Equation 1 shows the s-domain transfer function of the circuit. H(s) is derived from the voltage divider
analysis of the RCL network to be:

\
H(S) - VO - RS 1 Eqgn.1
i Rs+Ls?+ c

where s = j(2mf) .

Equation 2 shows the bilinear transformation between the s-plane and the z-plane:

s = 2rl-z1g Eqn. 2
TO + 710

where z = 69, 6 = wT = (2mf)(1/f,), and T isthe sample period (1/f,).

Using Equation 2, the z-plane transfer function is found from Equation 1:

72
H(z) = a(l-z=<) Eqn. 3
2
2 Implementing a 10-Band Stereo Equalizer

@ MOTOROLA

Filter Design

With Equation 3, the coefficients for each filter are calculated using the following three equations:

0

_ tan2t

) 11 tanEIZQD
B = 5—6 Egn. 4

1+tanE|tT°?E
y = %+B%COSGO Ean.5
- _q0 Eqn. 6

o = 5-B2 an

where Q = f./(f,~f;) and 8, = 2n(f,/f,) . Thevalue f, isthe center frequency of the bandpassfilter, f, and
f, arethe half-power points (where the gainisequal to 1/(./2)), and f, isthe sample frequency. These
equations are approximations for center frequencies less than f,/8 (or 6000 Hz).! To implement the
transfer function from Equation 3 asadigital |IR Filter, it must be transformed to a difference equation in
the discrete time domain. Equation 7 shows this difference equation, and Figure 2 showsiits
representation as a network diagram.

y(n) = 2{a[x(n) -=x(n-2)] +yy(n—1) -By(n-2)} Eqn. 7

x(n) y(n)
y(n-1)
x(n-2) y(n-2)

Figure 2. Bandpass IIR Filter Network Diagram

At each sample period, aleft and right sound byte isfed to the 10 filtersin parallel (see Figure 3). After
each respective bandpass filter eliminates the frequencies not in its range, each output (y,(n) - y,o(n)) is
scaled by an output gain. This gain value ranges from 0 to 1. The results of the ten filters are then summed
together and outputted. This process allows one to selectively remove, or limit, the gain of a particular
frequency range from the sound source.

1. Seethe application note entitled Implementing IIR/FIR Filters with Motorola’s DSP56000 D@HPR7/D).

@ MOTOROLA Implementing a 10-Band Stereo Equalizer 3

Filter Design

“y5(n)
N
|
,\yg(n)
L~
L~
ys(n)
NS &::
I

L~
’\y7(n)

{3]
N
1T
[0tz
{5007z |
BN
-z >

o >
B
[tekE >

Figure 3. 1IR Equalizer Data-Flow Diagram

X(n) y(n)

Table 1 shows the 10 center frequencies chosen for this programming example. The coefficients for the
center frequencies less thans (or 6000 Hz) were found using equationsSeefion 1. The
coefficients for the center frequencies above 6000 Hz were found using more exact edu@i®okosen
to be 1.4.

Table 1. Digital IR Bandpass Coefficients

Fr(e:(? Sct;]rcy a B Y
31 Hz 0.000723575 0.49855285 0.998544628
62 Hz 0.001445062 0.497109876 0.997077038
125 Hz 0.002904926 0.494190149 0.994057064
250 Hz 0.005776487 0.488447026 0.987917799
500 Hz 0.011422552 0.477154897 0.975062733
1000 Hz 0.02234653 0.455306941 0.947134157
2000 Hz 0.04286684 0.414266319 0.88311345
4000 Hz 0.079552886 0.340894228 0.728235763
8000 Hz 0.1199464 0.2601072 0.3176087
16000 Hz 0.159603 0.1800994 -0.4435172

2. For afull analysis, see the application note entitled Digital Sereo 10-Band Graphic Equalizer Using the
DSP56001 (APR2/D).

4 Implementing a 10-Band Stereo Equalizer @ MOTOROLA

Development Environment

2 Development Environment

This section describes the development environment for the 10-band stereo equalizer (see Figure 4). It
outlines the hardware and software requirements; describes how to establish the physical connection
between the PC and the DSP56311 EVM board; and lists the steps for compiling, downloading, and
running code on the DSP56311 EVM board. Once you complete these steps, you are ready to implement
the 10-band stereo equalizer.

Serial Port Cable

Suite56
parallel
command
converter

PC
DSP56311EVM

Stereo Stereo
Input Output

Figure 4. Development Setup

2.1 Personal Computer Running Windows NT® 4.0
The following programs should be running on your personal computer:
e Codewright for Windows. Programmer’s text editor used to create and modify files. Note that other
text editors can also be used.
e Command Prompt. DOS-style terminal used to run tham56300 compiler.

e Suite56 DSP56300 Software Development Tools. Free Motorola DSP tools to compile and link
DSP assembly code. The hardware debuguisB6300, has a GUI interface that communicates
with the EVM Board through the parallel port command converter. It also downloads and executes
code on the DSP56311EVM.

« Visual Basic® 4.0Programming language for creating the equalizer GUI that allows you to
change the gain values for the various equalizer bands.

2.2 Suiteb56 Parallel Command Converter

The paralel command converter provides the physical connection between the PC and the
DSP56311EVM. Its parallel port interface connects to the PC. In addition, its female 14-pin header
connects the device to the JTAG/OnCHPort (J2) on the DSP56311EV M. For details on this device, consult
the Suite56 Parallel Port Command Converter User's Mani3PCOMMPARALLELUM/D).

@ MOTOROLA Implementing a 10-Band Stereo Equalizer 5

Development Environment

The jumper settings on the DSP56311EVM are listed in Table 2. For details on how to set up the jumpers
for the desired functionality, see the DSP56311EVM User’'s ManufdDSP56311EV MUM/D).

Table 2. Jumper Setting on the DSP56311 EVM Board

Number Function Description
J1 Boot Mode Select HI08 bootstrap in MC68302 bus mode
J3 FSRAM Memory Configuration Option Unified memory map
J4 SCI Header Pinout Connects serial port connector signals RxD and TxD to

the DSP SCI port

J5 SCI Port Clock Connects on-board 156.3 kHz oscillator to the SCI port
SCLK input (used for baud rate generation)

J6 On-board JTAG Enable/Disable Option On-board command converter disabled

J7 ESSIO0 Header Pinout Selects the DSP ESSIO port interface for use with an
on-board codec

J8 CS4218 Sampling Frequency Selection Selects 48 kHz sample rate for the codec

J9 ESSI1 Header Pinout Selects DSP ESSI1 port interface for use with an

on-board codec

J10 Core Current Measurement Jumper Connected jumper that applies power to the DSP core

TheLine INjack on the DSP56311EVM connects to the headphone jack of the PC. The PC providesthe
sound source for the DSP56311EVM. A pair of headphones or stereo speakers can connect to the
Headphone OUT/Line OUjBck to listen to the filtered sound source.

2.3

Interfacing the PC to the DSP56311EVM

Following are the steps to compile, download and run the code on the DSP56311EV M. It is assumed that
you are using the GUI version of ADS56300 (part of the Suite56 M otorola DSP software development
tools):

1

The st er eo. asmfileisthe main assembly file of the project. Using the command prompt, change to
the directory where the project files are stored.

At the prompt, type: asnb6300 -a -b -1 stereo.asm

Two output files are created. St er eo. | st contains alisting of the code, and st er eo. cl d isthe
executable to be downloaded to the DSP56311EVM. There may be a few warning when you compile
the code. These warningstell you of pipeline stalls located in the code. They have no effect on the
operation of the code.

Using the ADS56300 GUI, reset the 56311EV M.

Under File —» Load - Memory COFF, select the desired file (st er eo. cl d). Press Apply to load the
fileinto memory.

Sdlect GO (or type go into the Command window).

Implementing a 10-Band Stereo Equalizer @ MOTOROLA

Implementation of 10-Band Stereo Equalizer

Y ou should know about the following ADS56300 GUI windows:

e Command. Allows the user to type line commands.

» Core Registers. Displays the state of the core registers. The values can also be modified.

» EFCOP Registers. Displays the state of the EFCOP registers. The values can also be modified.
e Assembly. Displays the assembly code loaded in the DSP56311 program memory.

e X Memory. Displays the X-data Memory in the DSP56311.

e Y Memory. Displays the Y-data Memory in the DSP56311.

2.4 Useful Debugging Techniques

The breakpoint feature can be very useful. Software breakpoints stop at a particular instruction in program
memory. Hardware breakpoints allow you to examine the effects of the DSP56311. For example, a
breakpoint can be set up when a DMA channel writes data to one of the EFCOP registers in Y memory.
This allows you to view the state of the EFCOP after each sample is written to it. Hardware breakpoints are
particularly helpful when EFCOP operation needs to be verified.

3 Implementation of 10-Band Stereo Equalizer

There are numerous ways to implement the 10-band stereo equalizer using the DSP56311EVM. The
examples in this section show how to implement two versions of the equalizer. The overall functionality of
both versions is identical. The main differences between the versions lie in how the DSP56311 resources
are used. The two versions of the equalizer are compared in terms of:

< Program Flow and Functionality. The general flow serves as a template for designing each
specific implementation. Pertinent information includes how the DSP is initialized, what the main
interrupt sources are, how they are configured, and how they are handled. After examining these
features, you should have a good idea at how the overall program is structured.

e DSP56311 Core Implementation. How to process the 10 bandpass filters using the DSP56300
core. The memory map and register usage must also be considered.

« EFCOP and DMA Implementation. How to process the 10 bandpass filters using the EFCOP in
Multichannel mode and the DMA controller. The DSP56300 core is minimally used to set up the
peripherals. The memory map, register usage, and peripheral setup must also be considered.

3.1 Program Flow and Functionality

The general program flow of the 10-band stereo equalizer occurs in 14 stagdgyse&). All but four
of these stages (4, 6, 9, and 11) generally apply to any implementation. The first six stages initialize the
DSP56311EVM hardware and software buffers in memory:

e Stage 1: Initialize the DSP56311. Set the clock frequency and bus interface.
e Stage 2: Initialize ESSIO and ESSI1 to interface with the codec.

e Stage 3: Initialize the SCI to interface with an RS-232 port.

e Stage 4:

@ MOTOROLA Implementing a 10-Band Stereo Equalizer 7

Implementation of 10-Band Stereo Equalizer

a. (DSP56311 core implementation): Set up the Data Sample and Filter Coefficient memory
buffers. These data buffersresidein X and Y memory, respectively

b. (EFCOP and DMA Implementation): Set up EFCOP memory and initialize the DMA
controllers.

e Stage 5: Set the equalizer knob values to a preset level.
e Stage 6: Set up the values in registers RO to R7.

The last eight stages are part of an infinite loop to process the data received and transmitted through the
codec:

e Stage 7: Frame sync for the codec.

» Stage 8: Get voice data from the receive buffer.

» Stage 9: Process the LEFT voice data using the 10 Bandpass filters.

e Stage 10: Store the LEFT voice data to transmit buffer.

e Stage 11: Process the RIGHT voice data using the 10 Bandpass filters.
e Stage 12: Store the RIGHT voice data to transmit buffer.

e Stage 13: Using the equalizer knob values, adjust the gain values for each of the 10 bandpass
filters.

e Stage 14: Using the equalizer knob value that sets the main volume, adjust the main volume
settings of the codec.

3.1.1 Equalizer Filter and Volume Gain

After each of the 10 digital IIR bandpass filters in the 10-band stereo equalizer eliminates the frequencies
not in its range, the output is scaled by its respective output gain. The 10 gain values (and main volume)
are determined by user-settable values catjedlizer knob val ues3 The equalizer knob values consist of
eleven 8-bit values received through the Serial Communication Interface (SCI) and placed into a
predetermined space in Y memory (Bégur e 6). The least significant five bits of the first ten knob values

are used to select one out of 32 values in the filter gain table, ranging from —0.2 to 0.#&(seke 16

on page -33). The least significant five bits of the last knob value are used to select 1 out of 32 values in the
volume gain table, which are used to configure the volume setting in the codEgdsg®e 17 on page

-34). Using interrupts, the SCI constantly updates the equalizer knob values in Y memory. In Stage 13, the
knob values are used to update the runtime gain valles5-bit knob values function as indexes into the

filter and volume Gain tables. The run-time gain values are then used in Stages 9 and 11 when the voice
data is filtered. This process continually repeats.

3. The equalizer GUI isused to set the equalizer knob values.

8 Implementing a 10-Band Stereo Equalizer @ MOTOROLA

Implementation of 10-Band Stereo Equalizer

‘ Program Start ‘

1 l 2 3 (@) (5) (6)
DSP Init. Codec/ESSI | sCl Init ﬁFCOP/Data Knob Value Set up

Init Buffer Init Init Registers

Loop Start le—

Codec
Frame Sync

Set Main
Volume

Set Band

Gain Values
NOTE: The stages Input Input
depicted in the boxes with
thick borders generally
apply to any implementation
of the 10-band stereo equalizer.

Figure 5. General Program Flow

(Y-MEM)
KNOB_BASE:$0100 Equalizer 62 Hz Knob Val (X-MEM)
125 Hz Knob Val III
$010A Knob Values 250 Hz Knob Val |
I 500 Hz Knob Val
FILTER_GAIN_TBL:$0200 Filter Gain Table N O K“n%b VZ | KNOB_VAL
$021F el \ 2000 Hz Knob Val
e S —
VOLUME_GAIN_TBL:$0300 Volume Gain Table \ 4000 Hz Knob Val
$031F ‘volume_gain’ \ 8000 Hz Knob Val
\ 16000 Hz Knob Val
Main VOL Knob Val

GAIN_BASE:$2A00 Runtime
$2A0.,.A; Gain Values

Figure 6. Knob and Gain Memory Areas

@ MOTOROLA Implementing a 10-Band Stereo Equalizer 9

Implementation of 10-Band Stereo Equalizer

3.1.2 Stage 1: DSP Initialization

Thefirst stage of the code, shown in Example 1, initializes the following DSP memory address locations.
e INIT_PCTL. Written to the Phase Lock Loop Control Register (PCTL) to set up the DSP56300
core operating frequency.

« INIT_BCR. Written to the Bus Control Register (BCR) to control the external bus activity and bus
interface unit operation.

e START. Marks the start of the program in program memory.

Example 1. DSP Initialization

ckkkhk kA AR h Kk k Kk hk Kk hkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhhkkx*k
i

nol i st

i ncl ude ’ioequ. asmi

i ncl ude 'intequ.asm

i ncl ude ' ada_equ. asmi
i ncl ude ’vectors. asmi

l'ist
I NI T_PCTL EQU $040006 ; Fcore=fcrystal *M=12. 288M1z* 7=86 Mz
I NI T_BCR EQU $012421

org p: $400

nmovep #1 NI T_PCTL, x: M_PCTL ; PLL 7 X 12.288 = 86.016Mz
novep #1I NI T_BCR, x: M_BCR 7 AARX - 1 wait state

ori #3, nr ; mask interrupts

novec #0, sp ; clear hardware stack pointer
nove #0, onr ; operating node 0

3.1.3 Stage 2: Codec/ESSI Initialization and Operation

The second stage of the code, showBxample 2, sets up the codec on the DSP56311 EVM Board. The
receive and transmit buffer pointers are set up first. Theaddénit procedure sets up the codec by
initializing the ESSIO0 and ESSI1 registers. For details, ref@ragramming the C$4218 CODEC for Use
With DSP56300 Devices (AN1790/D).

Example 2. Codec/ESSI Initialization

nove #RX_BUFF_BASE, x0

nove x0, x: RX_PTR ; Initialize the rx pointer
nove #TX_BUFF_BASE, x0

nove x0, x: TX_PTR ; Initialize the tx pointer
jsr ada_init ; Initialize codec

10 Implementing a 10-Band Stereo Equalizer @ MOTOROLA

Implementation of 10-Band Stereo Equalizer

The codec is configured to sample incoming data at a rate of 48,000 Hz. Figure 7 shows the data format
between the ESSI interface and the codec. ESSIO is configured for Network mode with two time slots. Slot
0 of the 32-hit frame always contains the Left Channel Word, while Slot 1 always contains the Right
Channel Word.

Six ESSIO interrupt service routines (ISRs) handle the ESSIO receive and transmit interrupts. These ISRs
arelocated intheada_i ni t . asmfile. A receive interrupt occurs at the end of each time slot, after each
channel is serially shifted into the ESSIO Receive Shift Register and then transferred to the Receive Data
Register. The receive interrupt service routines place each word in the receive buffersinto X memory (see
Figure 7). The 16-bit channel words are placed into the 16 most significant bits of the 24-bit memory
word. The lower 8 bits are cleared. A transmit interrupt occurs at the beginning of each time slot. The
transmit interrupt service routines place each word into the ESSIO Transmit Data Register, where it isthen
transferred to the Transmit Shift Register and then serially shifted out of the DSP.

Stages 7 through 12 (Figure 5) take the left and right channel words from the Receive Data Buffer
(RX_BUFF_BASE), process them, and place the result into the Transmit Data Buffer (TX_BUFF_BASE)
to be transmitted during the next codec dataframe. T1 and T2 in Figure 7 represents the maximum time
allowed to process each channel in order to be transmitted correctly during the following time frame. The
Left Channel (T 1) must be processed from therising edge of the frame sync to the falling edge of the frame
sync and placed into the Transmit Data Buffer in order to be transmitted on time. The Right Channel (T2)
must be processed from the rising edge of the frame sync to the end of dot 0 of the next time frame and
placed into the Receive Data Buffer. The restriction of the processing time for each channel is due to the
design. With a core frequency of 86.016 MHz and a sampling rate of 48 kHz, T1 = 1794 DSP clocks and
T2 =59,198 DSP clocks.

e Frame 32-bits Lyl | |

I

| |

SSYNC | |
| ' L |
SDIN ILeft Channel Word 0 IRight Channel Word d Left Channel Word Right Channel Word
|

|
~ | ~
| ~ ~ |
~ ~

5 5
| .
Left Channel Word Right Channel Word Left Channel Word 0 I Right Channel Word OI
STOUT |
|
: Slot 0 | Slot 1 : : : |
< > i |
! 16-bits ! 16-bits H T1 !
_______________ e L
(X-MEM)
RX_BUFF_BASE: | Left Channel Word 00000000
Right Channel Word 00000000
TX_BUFF_BASE: | Left Channel Word 00000000
Right Channel Word 00000000
L | |
23 7 0
Figure 7. Codec Data Format and Layout in Memory
Implementing a 10-Band Stereo Equalizer 11

@ MOTOROLA

Implementation of 10-Band Stereo Equalizer

3.1.4 Stage 3: SCI Initialization and Operation

Stage 3 of the code, shown in Example 3, initializes the following memory address locations:

e INIT_SCCR. Written to the SCI Clock Control Register (SCCR) to set up the baud rate.
« INIT_SCR. Written to the SCI Control Register (SCR) to control the serial interface operation.

The Port E register (PCRE) is also configured to enable the SCI lines. Finally the pointer (KNOB_VAL) to
the equalizer knob values in Y memory is initialized.

Example 3. SCI Initialization

I NI T_SCCR EQU $002010 ; baud = Fcore/[64*(7(SCP) +1) * (CD+1)]
I'NI T_SCR EQU $000b02

novep #1 NI T_SCCR, x: M_SCCR ; Initialize SC

novep #I NI T_SCR, x: M_SCR

nmovep #$7, x: M_PCRE

nove #KNOB_BASE, r 0 ; Initialize the SCI pointer.
nove r0, x: KNOB_VAL

The SCl is configured to receive the equalizer knob values from the external PC (or other source). One ISR
handles the SCI receive interrupt. A receive interrupt occurs when a byte is shifted into the SCI Receive
Shift Register and then transferred to the Receive Data Register. The ISR places this byte in one of the
equalizer knob value memory locations to which KNOB_ VAL points fsgar e 6). The operation of the

SCI ISR is very simple (as shown in the top halFiglur e 8).

1.
2.
3.

5.

It saves a few core registers to the system stack.
It reads the data byte from the SCI Receive Data Register.

The character “Enter” (hex value 0xd) is used to reset the table pointer (KNOB_VAL) to the equalizer
knob value base (KNOB_BASE).

If the character “Enter” is read, KNOB_VAL is set to equal KNOB_BASE. Else if another character is
read, then that character is put at the Y-Memory location pointed to by KNOB_VAL.

The core registers are then restored, and the interrupt exits.

In this programming example, the equalizer knob values come from the COM1 or COM2 port of a PC. The
Equalizer GUI that allows the user to set the knob values sends the data pattern shown in the bottom half of
Figure8.

12

Implementing a 10-Band Stereo Equalizer @ MOTOROLA

Implementation of 10-Band Stereo Equalizer

D
‘ SCIRX IRQ ‘ YES Reset PTR
KNOB_VAL=KNOB_BASE 1

A 4 B D E
Save REGs Read from Put Char into estore REGs
> —» RFI
T to Stack I_>1;C| RX Buff Knob Table i%from Stack

Char = 0x0d
??

ENTER 31 Hz Knob | 62 Hz Knob {125 Hz Knob|250 Hz Knob/500 Hz Knob| 1 kHz Knob | 2 kHz Knob| 4 kHz Knob | 8 kHz Knob |16 kHz Knob|Volume Knob)

0x0D Charl Char2 Char3 Char4 Char5 Char6 Char7 Char8 Char9 Char10 Charll

>

Figure 8. SCI Interrupt Service Routine and Incoming Data Pattern

3.1.5 Stage 4. EFCOP Memory Initialization and DMA Setup

Stage 4 of the code, shown in Example 4, sets up the X and Y memoaries for this version of the
implementation. The code in program memory does two things.

e Clears thex(n) andy(n) data buffers at DATA_BASE_L and DATA BASE_R.

e Sets up the data buffer pointers in memory using DATA_PTR.

Figure 9 shows the memory map for this implementation. The following areas of memory are specific to
this implementation and have not been discussed in previous sections.

« DATA BASE L and DATA BASE R. These two areas in X memory hold the current data values
for x(n) to x(n-2) andy(n) to y(n-2) for all 10 bandpass filters.

« DATA PTR. It is necessary to store the pointers to the memory areas. Storing these values in X
memory means that one register can be assigned to save and restore the four data pointers when
they're needed.

e COEF_BASE. This area of Y memory containsthep , , and coefficients for each of the 10
bandpass filters.

@ MOTOROLA Implementing a 10-Band Stereo Equalizer 13

Implementation of 10-Band Stereo Equalizer

(X-MEM) (Y-MEM)
STACK_PTR: $0000 SYSTEM STACK PONTER
KNOB_BASE: $0100 31 Hz Knob Value
DATA_BASE_L: $1000
$1(.).(.)2 x(n) Values for LEFT Channel $010A Main VOL Knob Value
$1040 y(n) Values for LEFT Channel FILTER_GAIN_TBL: $0200 Filter Gain Table
L0 — $021F filter_gain’
DATA BASE R: $11001 1) values for RIGHT Channe| VOLUME_GAIN_TBL: $0300 Volume Gain Table
$1102 $031F ‘volume_gain’

$1:.L.‘.10 y(n) Values for RIGHT Channe
$1167
RX_BUFF_BASE: $2800 LEFT CHANNEL WORD COEF_BASE: $1000
$2801 RIGHT CHANNEL WORD $101D
TX_BUFF_BASE: $2802 LEFT CHANNEL WORD
$2803 RIGHT CHANNEL WORD
RX_PTR: $2804 Pointer to RX Buffer
TX_PTR: $2805 Pointer to TX Buffer

KNOB_VAL: $2806 Pointer to KNOB TABLE

GAIN_BASE: $2A00

31 Hz Channel Gain
$2A0A Main VOL Setting

DATA_PTR: $2B00 Pointer to Yi(n): Left-channel
$2B01 Pointer to X(n): Left-channel
$2B02 Pointer to Yi(n): Right-channe|
$2B03 Pointer to X(n): Right-channel

Figure 9. Memory Map for DSP56300 Core Implementation

Example 4. Filter Parameter Setup

org y: FILTER_GAI N_TBL
i ncl ude "filter_gain’

org y: VOLUVE_GAI N_TBL
i ncl ude "vol une_gai n’

org y: COEF_BASE

i ncl ude "coef f’

715 TN PROGRAM MEMORY,; ; ;

; Filter Parameter Setup

;Clear the x(n) and y(n) Data Buffers

nove #DATA BASE L, r3
rep #$68

nove ro, x: (r3)+
; Xx: DATA_BASE_L+($00..%$02) - x(n) left chan.
; Xx: DATA _BASE_L+($40..%$42) - y(n) left chan. 31 Hz
; X: DATA _BASE_L+($44..%$46) - y(n) left chan. 62 Hz

i

; X: DATA _BASE_L+($64..%$66) - y(n) left chan. 16 kHz

nove #DATA BASE R, r3
rep #$68
nove ro,x:(r3)+

14 Implementing a 10-Band Stereo Equalizer @ MOTOROLA

Implementation of 10-Band Stereo Equalizer

; x: DATA_BASE_R+($00. . $02) - x(n) right chan.
x: DATA_BASE_R+($40..%$42) - y(n) right chan. 31 Hz
x: DATA_BASE_R+($44..%$46) - y(n) right chan. 62 Hz

; X: DATA_BASE_R+($64..%$66) - y(n) right chan. 16 kHz

Setup Filter Data Buffers (and Pointers)

nove #DATA PTR r3

nop

nmove #DATA_BASE_L+$40,r0 ; Yi(n):L-ch at x: DATA BASE L+$40
nove ro, x: (r3)+

nove #DATA BASE L, r0 ;o X(n):L-ch at x:DATA BASE L
nove ro,x:(r3)+

nove #DATA_BASE_R+$40,r0 ; Yi(n):Rch at x: DATA BASE_R+$40
nove ro, x: (r3)+

nove #DATA BASE R r0 i X(n):Rch at x: DATA BASE R
nove ro, x:(r3)

Next, we implement the 10-band stereo equalizer using the DSP56311 EFCOP to process the bandpass
filtersand DMA to transfer the DATA to/from the EFCOP. Stage 4 of the code, shown in Example 5, sets
up the X and Y memories for thisimplementation version. The code in program memory does the
following:

e Clears the four EFCOP data buffers at FIR_FDBA L, FIR_FDBA R, IIR_FDBA _L, and
IIR_FDBA R.

e Sets up the EFCOP data buffer pointers in memory using FDBA_ PTR.

Figure 10 shows the memory map for this implementation.

(X-MEM) (Y-MEM)

FIR_FDBA_L: $1000 EFCOP FIR Data Buffer

FIR_FDBA_R: $1100 EFCOP FIR Data Buffer FILTER_GAIN_TBL: $0200 Filter Gain Table
$1127 for Right Channel $021F ‘filter_gain’

STACK_PTR: $0000 SYSTEM STACK PONTER
KNOB_BASE: $0100 31 Hz Knob Value
$1027 for Left Channel $010A Main VOL Knob Value

IIR_FDBA_L: $1200 EFCOP IIR Data Buffer VOLUME_GAIN_TBL: $0300 Volume Gain Table
sisia| o frenCham e voume g |
IIR_FDBA_R: $1300 EFCOP IIR Data Buffer
$1313 for Right Channel
RX_BUFF_BASE: $2800 LEFT CHANNEL WORD FIR_COEF: $1000
$2801 RIGHT CHANNEL WORD $1027 —
TX_BUFF_BASE: $2802 LEFT CHANNEL WORD IR_COEF: $1200
$2803 RIGHT CHANNEL WORD $1213 ir_coeff
RX_PTR: $2804 Pointer to RX Buffer
TX_PTR: $2805 Pointer to TX Buffer
KNOB_VAL: $2806 Pointer to KNOB TABLE
IR _TEMP: $2A00 IIR Filter Result $2A0A Main VOL Setting
$2A09
I

FDBA_PTR: $2B00| Current Pointer to FIR Data Buffer} L-ch
$2B01| Current Pointer to IIR Data Buffer:|L-ch
$2B02| Current Pointer to FIR Data Buffer] R-ch
$2B03| Current Pointer to IIR Data Buffer:|R-ch

Figure 10. Memory Map for EFCOP/DMA Implementation

@ MOTOROLA Implementing a 10-Band Stereo Equalizer 15

Implementation of 10-Band Stereo Equalizer

The following areas of memory are specific to this implementation and are not discussed in previous
sections.

FIR FDBA L, FIR FDBA R. These two areas in X memory hold the current left and right x(n) to
X(n-2) data values for each of the 10 EFCOP filter channels.

IIR_ FDBA L, IIR FDBA R. These two areas in X memory hold the current left and right y(n) to
y(n-2) data values for each of the 10 EFCOP filter channels.

FIR_TEMP. This area in X memory holds the result from the EFCOP after it has processed the
FIR part of the IIR filter. This area is 10 words long (one word for each of the 10 channels).

I[IR_TEMP. This area in X memory holds the result from the EFCOP after it has processed the IIR
part of the IIR filter. This area is 10 words long (one word for each of the 10 channels).

FDBA PTR. Due to the nature of the program, it is necessary to store the FDBA register of the
EFCOP after each use. This pointer saves and restores the correct data pointer values to the
EFCOP.

FIR_COEF. This area of Y memory contains the coefficients for each of the 10 EFCOP
channels.

IIR_COEF. This area of Y memory contains the and coefficients for each of the 10 EFCOP
channels.

Example 5. EFCOP Memory Initialization

16

;o d
nmove
rep
nmove

move
rep
move

move
rep
move

move
rep
move

;o d
nove
rep
nove

nove
rep
nmove

; Se
nove

ear the EFCOP Data Buffer
#FI R_FDBA L, r3 ; FIR Left Channel
#40
ro,x:(r3)+

#FI R_FDBA R, r3 ; FIR Ri ght Channel
#40
ro,x:(r3)+

| R_FDBA L, r3 ; IR Left Channel
#20
ro,x:(r3)+

| R_FDBA R r3 ; IR Right Channel
#20
ro,x:(r3)+

ear the Tenporary Storage Areas
#FI R _TEMP, r3
#CHANNELS
ro,x:(r3)+

#1 | R_TEMP, r 3
#CHANNELS
ro,x:(r3)+

tup EFCOP Data Buffers (and Pointers)
#FDBA PTR, r3 ; Base pointer for FDBA values (X mem

Implementing a 10-Band Stereo Equalizer @ MOTOROLA

Implementation of 10-Band Stereo Equalizer

nove #FIR_FDBA L, r0
nove ro, x: (r3)+
nove #! IR_FDBA_L,r0
nove ro, x:(r3)+
nove #FIR_FDBA R r0
nove ro, x: (r3)+
nove #! I R_FDBA_R, r0
nove ro,x:(r3)+

Setup Channel s in EFCOP
novep #CHANNELS-1,y: M FDCH ; # of EFCOP Channel s

3.1.6 Stage 5: Equalizer Knob Value Initialization

Stage 5 of the code, shown in Example 6, clears the memory spaces corresponding to the ‘Runtime’ gain
Values by writing a 0x0 to them. The equalizer knob values in memory are then set with the value Ox1F
(for the filter gain values) and 0x10 (for the volume gain value).

Example 6. Knob Value Initialization

; Clear the ‘Runtime’ Gain Values in memory

move #0,r0

move #GAIN_BASE,r3
rep #11

move ro,y:(r3)+

; Set equalizer knob values (for Filters)

move #$00001f,r0 ; Set index into Filter Gain Table
move x:KNOB_BASE,Ir3

rep #10

move r0,y:(r3)+

; Set equalizer knob values (for Volume)

move #$000010,r0 ; Set index into Volume Gain Table
nop
move r0,y:(r3)+

3.1.7 Stage 6: Set up Registers RO to R7

This implementation of the 10-band stereo equalizer uses all of the available DSP56300 core registers, as
shown in Example 7.

Example 7. Register Usage

; RO - lIR Coeff Pointer (30-word Buffer)

move #COEF_BASE,r0 ; IR Coeff for Left/Right Chan.
move #29,m0

; R1 - Knob Value Pointer (11-word Buffer)

move #KNOB_BASE,r1

; R2 - Points to the Filter and Volume Gain Tables

move #FILTER_GAIN_TBL,r2

@ MOTOROLA Implementing a 10-Band Stereo Equalizer 17

Implementation of 10-Band Stereo Equalizer

; RB - "Runtine’ Filter Gain Pointer (11-word Buffer)

nove #GAlI N_BASE, r 3

nove #10, nB

; R4 - Pointer to Yi(n) buffers (3-words * 10 Bands)

nove #2, ml ; Set y(n) nodulo for 3 words
nove #4, n4

; RS - Pointer to X(n) buffer (3-words)

nove #2, nb

; R6 - User Stack Pointer

nove #STACK_PTR, r 6 ; initialize stack pointer.
nove #-1, nb ; linear addressing

; R7 - Holds Pointer Value for current Data Buffer (4-Wrds)

nove #DATA_PTR r7 ; Base pointer for Data values (X nem
nove #3, nv ; Set the buffer to 4

The coreregister usage is as follows:

RO. Pointer to filter coefficients in Y memory (30-word circular buffer)
R1. Pointer to knob values in Y memory (11-word buffer)

R2. Pointer to filter gain table and volume gain table in Y memory.
R3. Pointer to filter gain values in Y memory (11-word buffer).

R4. Pointer to Yi(n) data buffers in X memory. This register is used for both the left and right

channels.

R5. Pointer to X(n) data buffers in X memory. This register is used for both the left and right

channels.

R6. System stack pointer, primarily used for interrupt service routines. The routines can use this

register to save and restore the state of regular code flow.

R7. Pointer for the current data buffer pointers. This register helps stamtiree X(n) and Yi(n)

data buffer pointer values in X memory (4-word buffer).

3.1.8 Stage 7, 8, 10, and 12: Codec Operation

The code for Stages 7, 8, 10, and 12 is shoviixample 8. Stages 7 through 14 make up an infinite loop

that processes the left and right voice channels that are received. In Stage 7, the Receive Frame Sync bit
(RFS) of the ESSI Status Register (SSISR) is used to start each loop. In Stage 8, the left and right voice
data, stored at RX_BUFF_BASE, is moved to registers in the DSP. After the voice data from the left and

right ch

annels is processed, it is moved to TX_BUFF_BASE.

Example 8. Codec Code

START LOOP

| oop
; Get Left and Ri ght Channel Data Bytes
j set #3, x: M_SSI SRO, * ; wait for RX frame sync
jeclr #3, x: M_SSI SRO, * ; wait for RX frame sync
nove X: RX_BUFF_BASE, x1 ; receive left
nove x: RX_BUFF_BASE+1, y1 ; receive right

;7 PROCESS LEFT | NPUT code ;;;

18

Implementing a 10-Band Stereo Equalizer

@ MOTOROLA

Implementation of 10-Band Stereo Equalizer

nove a, x: TX_BUFF_BASE ; transmit left data byte
;7 PROCESS RIGHT | NPUT code ;;;
nove b, x: TX_BUFF_BASE+1 ; transmit left data byte

3.1.9 Stage 9 and 11: Process Left/Right Input

Processing of the left and right voice data bytes is practically identical. The only differenceisthe codec
data bytes that are filtered. For acomplete IR filter to be implemented, the voice data must be processed
using the EFCOP FIR and IR types of filters. These two filter types (shown in Figure 11) are used
together to create two filtering phases. During the first phase, the FIR results for each of the 10 channels
are calculated using the EFCOP. DMA 0 transfers the codec voice data sample to the EFCOP, and DMA 1
transfers the results to the FIR_TEMP buffer. During the second phase, the I IR results for each of the 10
Channels are calculated. DMA 2 transfers the FIR results to the EFCOP, and DMA 3 transfers the final
resultsto the IIR_TEMP buffer in X memory (see Example 9). The results are then multiplied by their
respective gain values and added together.

At time x(n): |
ax2 | G.
x{(n-1) : | +>I > yin-1)
21 | /4 1
yi(n_z)
Z_l_a 2 | _B/4 Z_l
x{n-3) | ® 1 yn-3

FIR ! IR

Figure 11. EFCOP IIR Block Diagram

The FIR coefficients (inthefi r _coeff file) are multiplied by two. Similarly, the lIR coefficients (in the
iir_coeff file) aredivided by four. These operations produce the correct multiplication factor while the
EFCORP is processing the datain the | IR phase. The EFCOP IR block diagram for a single channel

(Figure 11) shows the how the two EFCOP phases are related. The EFCOP in IR mode is configured so
that it scales the feedback terms by 8. The EFCOP also introduces atime delay whenitisin FIR
Multichannel mode. This is why at time x(n), x(n—1) is processed instead. The channél gzan, be set
to have a value between —0.2 and 0.999 $seeon 3.1.1, Equalizer Filter and Volume Gain, on page 8).
A 3-tap FIR filter is used during the FIR filtering phase, implemented as follows:

1. Set the filter count register (FCNT) to the length of the filter coefficients —1 (that is, 2).
2. Set the Data and Coefficient Base Address Pointers (FDBA, FCBA).

3. Clear the ALU control register (FACR).
4

Set the control and status register (FCSR):
— FSCO =0 (EFCOP filter coefficients are stored sequentially in memory)
— FPRC =1 (EFCOP starts processing with no state initialization)

@ MOTOROLA Implementing a 10-Band Stereo Equalizer 19

Implementation of 10-Band Stereo Equalizer

FMLC = 1 (Multichannel Mode)
FOM = 00 (Real FIR filter)

FLT = 0 (FIR filter)

FEN =1 (Enable EFCOP)

A 2-tap IIR filter is used during the IIR filtering phase, implemented as follows:

1.
2.

Set the filter count register (FCNT) to the length of the filter coefficients-1 (i.e. 1).

Set the Data and Coefficient Base Address Pointers (FDBA, FCBA).

Set the ALU control register (FACR).
— FISL =1 (Determines where Scaling is done)

— FSCL = 01 (Scaling factor of 8)

Set the control and status register (FCSR):

FMLC = 1 (Multichannel Mode)
FLT =1 (IR filter)
FEN = 1 (Enable EFCOP)

FPRC = 1 (EFCOP starts processing with no state initialization)

Example 9. Use EFCOP and DMA to Process the Left Channel

FSCO = 0 (EFCOP filter coefficients are stored sequentially in memory)

vy, PROCESS LEFT | NPUT

; Initialize EFCOP for FIR stage of LEFT input

| fstart

nmovep #$000, y: M_FCSR
novep #FI R_LEN-1, y: M_FCNT
novep x:(r7),y: M_FDBA
novep #FI R_COEF, y: M_FCBA
nmovep #$000, y: M_FACR
novep #$0C1, y: M_FCSR

; Reset the EFCOP

; Set the counter for 3 Coeffs
, R7
; FIR Coeff Pointer
; Clear the FACR

; Enabl e EFCOP

= Current FIR Data Pointer

; Initialize DVA O (Data Sanples -> EFCOP {FDI R Reg})

; Initialize DMVA 1 (EFCOP { FDOR Reg}

novep #RX_BUFF_BASE, x: M_DSRO ;
novep #M FDI R, x: M_DDRO

novep #CHANNELS- 1, x: M_DCQ0
novep #$8eAA44, x: M_DCRO

novep #M_FDOR, x: M_DSR1
novep #FI R_TEMP, x: M_DDR1
novep #CHANNELS- 1, x: M_DCOL
novep #$8EB2C1, x: M_DCR1

; Wait for Conpletion of FIR Stage

20

jclr #0, x: M_DSTR, *
jclr #1, x: M_DSTR, *
novep y: M_FDBA, x: (r7) +

; Update FIR Data Pointer,

DMA source is the sound data buffer

; DVA Destination is the EFCOP (Y Mem
; DMA Count in node A
; Enabl e DMA Channel 0

-> FIR Tenp Storage)

; DMA source is the EFCOP (Y Mem)

; DMA Destination is FIRTEMP in X Mem
; DMA Count in node A

; Enabl e DVMA Channel 1

; DMA O Finished
; DMA 1 Finished

and

; Point to Il R Data Pointer

Implementing a 10-Band Stereo Equalizer

@ MOTOROLA

Initialize EFCOP for
novep

nmovep
nmovep
nmovep
nmovep
nmovep

IR stage of Left Input
#$000, y: M_FCSR

IR LEN-1,y: M FCNT
x:(r7),y: M_FDBA

#1 | R_COEF, y: M_FCBA
#$041, y: M_FACR ;
#$0C3, y: M_FCSR ;

Implementation of 10-Band Stereo Equalizer

Reset the EFCOP

Set the Counter to 2 Coeffs.
R7 = Current |IR Data Pointer
11 R Coeff Pointer

Set up Scaling factor

EFCOP enabl e

Initialize DVA 2 (FIR Tenp Storage -> EFCOP {FDI R Reg})

movep
movep
nmovep
nmovep

; Initialize DVA 3 (EFCOP { FDOR Reg}

movep
nmovep
movep
movep

#FI R_TEMP, x: M_DSR2 ;
#M FDI R, x: M_DDR2 ;
#CHANNELS- 1, x: M_DCO2
#$8EAA54, x: M_DCR2

#M_FDOR, x: M_DSR3 ;
#1 1 R_TEMP, x: M_DDR3 ;
#CHANNELS- 1, x: M DCO3 ;
#$8EB2C1, x: M_DCR3 ;

Wait for Conpletion of IR Stage

jeclr
jclr

movep

Send out sound byte
nmove
nove
clr
do
nmac
| eft _out

macr

nove

#2, x: M_DSTR, * ;
#3, x: M_DSTR, * ;

y: M FDBA, x: (r7) +

| R_TEMP, r 0 ;
#GAI N_BASE, r 4 ;

DMA source is the sound data buffer
DMVA Destination is the EFCOP (Y Mem
DMA Count in node A
Enabl e DVA Channel 2

-> FIR Tenp Storage)

DMA source is the EFCOP (Y Mem

DVA Destination is FIR TEMP in X Mem
DMA Count in node A

Enabl e DMA Channel 3

DMA 2 Fi ni shed
DMA 3 Fi ni shed

Update Il R Data Pointer, and
Point to FIR Data Pointer
(Ri ght Channel)

Pointer to Il R val ues
Pointer to Gain val ues

a x: (ro0)+, x0 y:(r4)+,y0
#9,1 ef t _out

x0, y0, a x: (r0)+, x0 y:(r4)+,y0
x0, y0, a

a, x: TX_BUFF_BASE

transmt left data byte

3.1.10 Stage 13 and 14: Setting Knob and Main Volume Gain Values

Stages 13 and 14 are shown in Example 10. During Stage 13, the equalizer knob values (at KNOB_BASE)
are used asindexesinto thefilter gain table. The gain valuesfor the 10 filters come from this Table. During
Stage 14, the last equalizer knob value is used as an index into the volume gain table. The codec controls
the main volume for the system. If the knob value for the volume is between 0x0 to OxF, then the output is
attenuated (less sound). Attenuation is accomplished by reprogramming the upper control word
(CTRL_WD_HI) for the codec. If the knob value for the volume is between 0x10 to Ox1F, then gain is
added (more sound). Gain is accomplished by reprogramming the lower control word (CTRL_WD _LO)
for the codec. The value programmed to the codec isin the volume gain table.

@ MOTOROLA

Implementing a 10-Band Stereo Equalizer 21

Implementation of 10-Band Stereo Equalizer

Example 10. Setting Gain Values

CET and SET new Band Gain Val ues

bgai n_s
nove #KNOB_BASE, r 1 ; Pointer to equalizer knob val ues.
nove #FI LTER_GAI N_TBL, r2 ; Pointer to Filter Gain Table.
nove #GAlI N_BASE, r 3 ; Pointer to 'runtine’ gain val ues.
clr a
do #10, bgai n ; 10 Knobs for 10 Filter Channels
nove y:(rl)+a ;1. Get Knob Val ue.
and #$00001F, a ; 2. Mask for lowest 5 bits.
nove al, n2 ; 3. Set index into Filter Gain Table.
nove y:(r2+n2),r0 ; 4. Use index to get Filter Gain Val ue.
nove ro,y:(r3)+ ; 5. Update 'runtime’ Filter Gain Value
bgain
vgai n_s
nove #VOLUME_GAI N_TBL,r2; Pointer to Volunme Gain Table
nove y:(rl)+,a ;1. Get Knob Val ue.
and #$00001F, a ; 2. Mask for lowest 5 bits.
nove al, n2 ; 3. Set index into Volume Gain Table.
nove y:(r2+n2),r0 ; 4. Use index to get Volunme Gain Val ue.
nove ro,y:(r3)+ ; 5. Update 'runtinme’ Volune Gain Val ue
cnp #$00000F, a ;I f index=0x0-0xF, attenuate the output
jle vol _atten ; If index = 0x10-0x1F, add gain
nove #$000300, r1
nove ro,x: CTRL_MD_LO
nove ril, x: CTRL_WD _HI
jmp vgain
vol _atten
nove #3$000000, r1
nove ro, x: CTRL_WD_HI
nove ri, x: CTRL_WD LO
vgai n
jsr init_codec ; Send Control Word to CODEC

22

The KNOB TABLE discussed earlier sets the gain values for the 10 bandpass filters and the main volume.
Four spacesin memory are used in the stages.

KNOB_BASE. Base of the 11-word equalizer knob value area in Y memory. The values in this
memory area are ASCII values sent from the COM port on the PC. These values are the indexes to
the filter and volume gain tables.

FILTER _GAIN_TBL. Filter gain values in Y memory. This table is contains 32 words ranging
from the values of —0.2 to 0.999 (s&tion 6, Coefficients and Gain Table Files, on page 30).

VOLUME_GAIN_TBL. Volume setting values in Y memory. This table is made up of 32 words.
The lower 16 words contain configuration settings for the lower 16 bits of codec control data. The
upper 16 words contain configuration settings for the upper 16 bits of codec control data (see
Section 6, Coefficients and Gain Table Files, on page 30).

GAIN_BASE. 10-word Y memory table that contains the currently selected runtime gain values.
The code irExample 10 show how this table is updated.

Implementing a 10-Band Stereo Equalizer @ MOTOROLA

Equalizer Graphical User Interface (GUI)

4 Equalizer Graphical User Interface (GUI)

A simple GUI setsthe gain values for each of the bandpass filters and the main volume. This GUI runs
under the Windows NT/98 OS. Figure 12 shows the initial state of the equalizer GUI. This section
discusses the GUI operation and the devel opment of this GUI using Microsoft Visual Basi ®,

. Stereo Equalizer

od [hd (hd Ik (Rhid Id Bid B d B d B d B RS

[31 [6z [124 [248 [500 [1k | 2k | 4k | 8k [16k [oL

Statuz: |

[~ Show Frequency On/OFfF T able

Setup E xit

Figure 12. Equalizer Graphical User Interface

4.1 GUI Operation

The GUI interface consists of the following:

» Eleven equalizer knobs (represented as scroll bars) on the face of the GUI; 10 to set the gain values

of the bandpass filters and 1 to set the main volume.
« A status line to display messages to the user. It is currently not used for anything

» Frequency table On/Off checkbox to bring up a small dialog box that allows the user to change the

knob values of the 10 bandpass filters’ gain. When a certain frequency is checked, the

corresponding knob changes to the very top position (a gain of 1). The opposite happens when it is

unchecked (sekigure 13).

e Setup andExit buttons to bring up a dialog window that allows the user to change the
communications port on the PC.

@ MOTOROLA Implementing a 10-Band Stereo Equalizer 23

Equalizer Graphical User Interface (GUI)

The bandpass filter gain ranges from 0 to 1, with 0 at the bottom position and 1 at the top. Each knob
allows you to select from 1 of 16 different positions (gain values). Setting the scroll bar to the top causes
the gain to be 1. Hence, the frequencies of that particular band passes through. Setting the scroll bar to the
bottom causes the gain to be 0. Hence, the frequencies of that particular band is removed (or limited).

The main volume knob has 32 positions that can be selected. Sixteen of these positions gradually decrease
the main volume, while 15 increase the main volume. There is one knob position that does not affect the

main volume.

. Frequen...

IIiESE . CommPort Configuration
| 128 e — Com Paort

v 248Hz * Coml

v 500 Hz " Com2

v £ oo Cancel |
v 2kHz ¢~ Comd

W 4kHz

W &kHz

W 16 kHz

Figure 13. Frequency Table and COM Port Configuration

4.2 GUI Development

The equalizer GUI is implemented in Microsoft Visual Basic®, mainly because this very simple
programming language provides good access to the communications port of a personal computer running
Microsoft Windows. This section briefly describes the code written for the GUI. It is assumed that you
know how to use Microsoft Visual Basic 4.0

4.2.1 Equalizer Form

The Equalizer Form is the main GUI form ($8gure 12). Several procedures are associated with this
form, but only two are key to its functionality: Band_Change() and Send_D&axafhple 11 shows these
two procedures.

Example 11. Baud_Change() and Send_Data() Procedures

Private Sub Band_Change(lndex As Integer)
BandVal (1 ndex). Caption = Format (31 - Band(| ndex). Val ue)
Cal |l Send_Data
End Sub

Private Sub Send_Dat a()

' Send Gain info to DSP
I f MSConmmil. Port Open Then

24 Implementing a 10-Band Stereo Equalizer @ MOTOROLA

Using the EFCOP in Multichannel Mode

' First, Send Reset Character
MSConmmil. Qut put = Chr $(13)

For Knob = 0 To 10 Step 1
MSConmil. Qut put = Chr$((31 - Band(Knob). Val ue) + 32)
Next Knob
End If
End Sub

The 11 knobs (scroll bars) form an object array element named Band. The Band_Change() procedureis
called when one of the equalizer knobs changes its value. This procedures invokes the Send Data
procedure, which uses the MSComm1 object to transmit ASCII characters out of the specified
communications port. The value 0x0d is sent out first. Then the position value for each knob isread and
sent out, starting with the 33 Hz knob (see Example 8 on page -13).

4.2.2 Frequency Table Form
Example 12 shows the main procedure for this form.

Example 12. Checkl1_Click Procedure

Private Sub Checkl_dick(lndex As |nteger)
I f Checkl(lndex).Value = 1 Then
For mlL. Band(| ndex) . Value = 0
El sel f Checkl(Index).Value = 0 Then
For mlL. Band(| ndex) . Val ue = 15
End I f
End Sub

The 10 checkboxes form an object array element named ‘Checkl’. The Checkl_ Click() procedure changes
the equalizer knob values.

4.2.3 Communications Port Settings Form

The code for the communications port settings form changes the communications port value in the
MSComml object.

5 Using the EFCOP in Multichannel Mode

The EFCOP peripheral module functions as a general-purpose, fully programmabile filter. It has optimized
modes of operation to perform real and complex impulse response (FIR) filtering, infinite impulse
response (IIR) filtering, adaptive FIR filtering, and multichannel FIR filtering-ilyar e 14 shows, the

EFCOP comprises these main functional blocks:

e Peripheral module bus (PMB) interface, including:
— Data input buffer
— Constant input buffer
— Output buffer
— Filter counter
e Filter data memory (FDM) bank

@ MOTOROLA Implementing a 10-Band Stereo Equalizer 25

Using the EFCOP in Multichannel Mode

» Filter coefficient memory (FCM) bank

e Filter multiplier accumulator (FMAC) machine

e Address generation

e Control logic

DMA BUS -
PMB <
Interface |4 GDB BUS >
A 4 v I Y '\I’qlemgry
4-Word Share
FDIR Data Input Buffer _FCNT RAM
Control Filter Count e |
Logic —— % FCBA I FCM I
Fe====1 Coefficient Base | |
X Memory 1 FDM 1 FDBA Coefficient |
Shared [(&7 | Data Base Memory Bank
RAM 1., PATA 24%it |
Memory Bank Address L — —
24-bit Generator y
Ly ———
FMAC

FKIR
Filter Constant

v

24x24 - 56-bit

> Rounding & Limiting

FDOR |

I Output Buffer

Figure 14. EFCOP Block Diagram

5.1 EFCOP Registers

This section documents the registers for configuring and operating the EFCORI{k=8). For details
on these registers, consult b8P56311 User’'s Manu@DSP56311UM/D)

Table 3. EFCOP Registers Accessible Through the PMB

Register Name

Description

Filter Data Input
Register (FDIR)

A FIFO four words deep and 24-bits wide for DSP-to-EFCOP data transfers. Data from
the FDIR is transferred to the FDM for filter processing.

Filter Data Output
Register (FDOR)

A 24-hit wide register for EFCOP-to-DSP data transfers. Data is transferred to the FDOR
after processing of all filter taps completes for a specific set of input samples.

Filter K-Constant Input
Register (FKIR)

A 24-bit register for DSP-to-EFCOP constant transfers.

26

Implementing a 10-Band Stereo Equalizer

@ MOTOROLA

Using the EFCOP in Multichannel Mode

Table 3. EFCOP Registers Accessible Through the PMB (Continued)

Register Name

Description

Filter Count (FCNT)
Register

A 24-bit register that specifies the number of filter taps. The EFCOP address generation
logic uses the count stored in the FCNT register to generate correct addressing to the
FDM and FCM.

EFCOP Control Status
Register (FCSR)

The DSP56300 core uses this 24-bit read/write register to program the EFCOP and to
examine the status of the EFCOP module.

EFCOP ALU Control
Register (FACR)

The DSP56300 core uses this 24-bit read/write register to program the EFCOP data
ALU operating modes.

EFCOP Data Buffer
Base Address (FDBA)

The DSP56300 core uses this 16-bit read/write register to indicate to the EFCOP the
data buffer base start address pointer in FDM RAM.

EFCOP Coefficient Buffer
Base Address (FCBA)

The DSP56300 core uses this 16-bit read/write register to indicate the EFCOP
coefficient buffer base start address pointer in FCM RAM.

Decimation/
Channel Count
Register (FDCH)

A 24-bit register that sets the number of channels in Multichannel mode and the filter
decimation ratio. The EFCOP address generation logic uses this information to supply
the correct addressing to the FDM and FCM.

5.2 EFCOP Programming for Multichannel Mode

This section discusses how to program the EFCOP to process multiple channels (Multichannel mode) and
shows how the filter coefficients should be set up in memory. EFCOP operation is determined by the
control bitsin the FCSR. Multichannel mode is selected by setting FCSR[FMLC]. The number of channels
to processis one plus the number in the FDCH[FCHL] bits. Further filtering operations are enabled viathe
appropriate bitsin the FACR. After the FCSR is configured, enable the EFCOP by setting FCSR[FEN]. To
ensure proper EFCOP operation, most FCSR bits must not be changed while the EFCOP is enabled.

For each time period, the EFCOP receives the samples for each channel sequentially. Thisis repeated for
consecutive time periods. Filtering is performed with the same filter or different filters for each channel
using the FCSR[FSCOQ] hit. If FCSR[FSCO] is set, the same set of coefficientsis used for all channels. If
FSCO is clear, the coefficients for each filter are stored sequentially in memory for each channel.

5.2.1 FIR Filter Type

@ MOTOROLA

To select the FIR filter type, clear FCSR[FLT]. In single-channel mode, the EFCOP takes an input, x(n),
from the FDIR, saves the input while shifting the previous inputs down in the FDM, multiplies each input
inthe FDM by the corresponding coefficient, B;, stored in the FCM, accumul ates the multiplication results,
and places the accumulation result, w(n), in the FDOR. In Multichannel mode, the operation for FIR
filtering isidentical but the EFCOP takes the input x(n — 1)instead of x(n). Thisis done for each sample
input to the FDIR. See Figure 15.

Implementing a 10-Band Stereo Equalizer 27

Using the EFCOP in Multichannel Mode

FDM FCM
FDIR x(n-1) —{::>——+ B, FDOR
|
v
x(n-2) @—» B;
|
v
x(n-3) @—» B,
|
M .
v
xm44w-4<:>——> By
Figure 15. Multichannel FIR Filter Type Processing
5.2.2 IR Filter Type
To select the lIR filter type, set the FCSR[FLT] bit. In Single and Multichannel modes, the EFCOP
performs these steps:
1. Multiply each previous output value in the FDM by the corresponding coefficient, A, stored in the
FCM.
2. Accumulate the multiplication results.
3. Add theinput, w(n), from the FDIR (which is optionally not scaled by S, depending on the
FACR[FISL] bit setting).
4. Place the accumulation result, y(n), in the FDOR.
5. Savethe output while shifting the previous outputs down in the FDM.

28

This process repeats for each sample input to the FDIR. To process acomplete IR filter, a FIR filter type
session followed by an IR filter type session is needed.

FDM FCM
y(i-l) @—» AO
yin-Z) —@—» Al

] A2
T -G
i :
yo-N) —OO— AN

Figure 16. Multichannel IIR Filter Type Processing

FDOR

FDIR

Implementing a 10-Band Stereo Equalizer

@ MOTOROLA

Using the EFCOP in Multichannel Mode

5.2.3 Memory Configuration
The EFCOP uses two memory banks:

e Filter Data Memory (FDM). This 24-bit-wide memory bank is mapped as X memory and stores
input data samples for EFCOP filter processing. The EFCOP Data Base Address (FDBA) register
points to the EFCOP FDM bank.

« Filter Coefficient Memory (FCM). This 24-bit-wide memory bank is mapped as Y memory and
stores filter coefficients for EFCOP filter processing. The EFCOP Coefficient Base Address
(FCBA) register points to the EFCOP FCM bank.

The number of coefficients, M, used by each channel determines how the filter coefficients and data
samples are stored in FCM and FDM, respectively. The value m = M-1 is stored in the Filter Count
Register (FCNT) to select the number of filter taps that each channel will use. Thektlalse address (lower
boundary) value of the FDM and FCM must have zeros in thei(k LSBs, \ﬂheré/l >2 . The upper
boundary is equal to the lower boundary plus (M -1). SMce 2 , once M is chosen (that is,
FCNT[11-0] is assigned), a sequential series of data memory blocks (each of \‘er'mgth@ated where
multiple circular buffers for multichannel filtering can be locatedVlik 2 , there is a space between
sequential circular buffers & —M (sBegure 17).

The data samples, D(n) are stored in each circular buffer of the FDM starting at the lower addresses. The
EFCOP manages placement of sample data into FDM. The filter coefficients are stored in “reverse order,”
where H(N —1) is stored in each circular buffer of the FCM starting at the lower addresses. These values
must be set up in Y memory before the EFCOP is enabled.

Figure 17 shows an example EFCOP memory configuration. The EFCOP is set in Multichannel mode.
There are two filter channels and each channel has three coefficients. Before the EFCOP is enabled, the
FCM must be initialized. The coefficients for the first channel are stored in reverse order starting from the
FCM base address (0x0). Since each filter has three coefficients (k = 2), the coefficients for the next
channel start at Ox4. After the EFCOP is enabled and initialized, the sample data is sent to the Filter Data
Input Register (FDIR). The EFCOP transfers that data to the FDM. The EFCOP does not touch the 0x3 and
0x7 positions in FDM and FCM.

FDM FCM
Ox1
Channel 1 D() H(1)
0x2 D) H(O)
0x3
o D(0) - Ox4 H(2))
0x5
Channel 2 D(1) H(1)
0x6 D) H(O)
0ox7
T T T0x8 D -

Number of Filter Taps = 3

Figure 17. Memory Configuration Example

@ MOTOROLA Implementing a 10-Band Stereo Equalizer 29

Coefficients and Gain Table Files

6 Coefficients and Gain Table Files

This section lists the coefficients used in both 10-band stereo equalizer implementations. It also lists the
filter and volume gain tables.

Example 13. DSP56311 Core Implementation FIR and IIR Coefficients

ckk Kk Kk kKKK A kA hkhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhkhkhkhkhkhkhhhkhkkx
i

; COEFF. ASM
; Digital Stereo 10-band Graphic Equalizer Using the 56311

Copyright (c) MOTOROLA 2000
; Sem conduct or Products Sector
; Digital Signal Processing Division

1
EEE R R R Sk Sk kR S R
i

IR RS R R SRR RS EEEEEEEEEEEEEEREEREREEEEREEEREEREREREEEEREEREEEEEREEREREESREESRERESEESEESEESES
; IR Coefficients for each of the 10 Bands
;**
31 Hz

. 49855285 i beta

. 000723575 ; al pha

. 998544628 ; ganma

62 Hz
. 497109876
. 001445062
. 997077038
125 Hz
. 494190149
. 002904926
. 994057064
250 Hz
. 488447026
. 005776487
. 987917799
500 Hz
. 477154897
. 011422552
. 975062733
1000 Hz
. 455306941
. 02234653
. 947134157
2000 Hz
. 414266319
. 04286684
. 88311345
4000 Hz
. 340894228
. 079552886
. 728235763
; 8000 Hz
. 2601072
. 1199464
. 3176087
; 16000 Hz
. 1800994
. 159603

. 4435172

888 888 888 888 888 888 888 888 888 888

30 Implementing a 10-Band Stereo Equalizer @ MOTOROLA

Coefficients and Gain Table Files

Example 14. EFCOP and DMA Implementation FIR Coefficients

ckk kKKK KRR A kA Ak hhhhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhkhkhkhkhkhhhkhkkx
i

; FI R_CCEFF. ASM

; Digital Stereo 10-band Graphic Equalizer

; Copyright (c) MOTOROLA 2000

Sem conduct or Products Sector

Using the 56311

Digital Signal Processing Division

EEE R R R Sk Sk S R S R
i

R R R R R R R R R R R R R R R

; FIR Coefficients for each of the 10 Bands

EEE R R Sk Sk Sk Sk R S R
i

31 Hz

; 125 Hz

; 250 Hz

; 500 Hz

; 1000 Hz

; 2000 Hz

; 4000 Hz

; 8000 Hz

888 8888 B888 8888 8888 BE888 8888 8888 BE8K8SE

@ MOTOROLA

-.000723575*2
$000000
. 000723575*2
$000000

-.001445062*2
$000000
. 001445062* 2
$000000

-.002904926*2
$000000
. 002904926* 2
$000000

-.005776487*2
$000000
. 005776487*2
$000000

-.011422552*2
$000000
. 011422552*2
$000000

-.02234653*2
$000000
. 02234653*2
$000000

-.04286684*2
$000000
. 04286684* 2
$000000

-.079552886*2
$000000
. 079552886* 2
$000000

-.1199464*2
$000000
. 1199464* 2

1

A2 = -al pha
Al =0
A0 = al pha

Added space to line up Coeffs in nenory

Implementing a 10-Band Stereo Equalizer

31

Coefficients and Gain Table Files

$000000
; 16000 Hz
-.159603*2
$000000
. 159603* 2
$000000

8888 8

Example 15. EFCOP and DMA Implementation IIR Coefficients

BRIk Sk Sk Sk Sk S S Sk S S Sk Sk Sk Sk Sk Sk Sk Sk kS Sk S Sk Sk Sk Sk S Sk Sk Sk kS Sk kS ko
i

; I I R_COEFF. ASM
; Digital Stereo 10-band Graphic Equalizer Using the 56311

; Copyright (c) MOTOROLA 2000
; Senm conduct or Products Sector
; Digital Signal Processing Division

BRI Sk Sk Sk Sk S S Sk Sk Sk Sk Sk Sk S Sk S S S Sk kS Sk Sk S Sk Sk Sk Sk Sk S Sk Sk Sk Sk Sk kS S kS kS kS kS
i

ER R R R R R R R]

; IR Coefficients for each of the 10 Bands

BRI Sk Sk Sk Sk S S Sk Sk S kS Sk Sk S S S Sk kS S Sk Sk Sk R Sk Sk S Sk Sk kS S kS kS kS
i

31 Hz
DC -.49855285/ 4; B2 = -beta
DC . 998544628/ 4; B1L = gamma
; 62 Hz
DC -.497109876/ 4
DC . 997077038/ 4
;125 Hz
DC -.494190149/ 4
DC . 994057064/ 4
; 250 Hz
DC -. 488447026/ 4
DC . 987917799/ 4
; 500 Hz
DC -. 477154897/ 4
DC . 975062733/ 4
; 1000 Hz
DC -.455306941/ 4
DC . 947134157/ 4
; 2000 Hz
DC -.414266319/ 4
DC . 88311345/ 4
; 4000 Hz
DC -.340894228/ 4
DC . 728235763/ 4
; 8000 Hz
DC -.2601072/ 4
DC . 3176087/ 4
; 16000 Hz
DC -.1800994/ 4
DC -. 4435172/ 4

32 Implementing a 10-Band Stereo Equalizer @ MOTOROLA

Coefficients and Gain Table Files

Example 16. Filter Gain Table

ckk kKKK KRR A kA Ak hhhhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhkhkhkhkhkhhhkhkkx
i

; Filter_Gai n. ASM

; Digital Stereo 10-band Graphic Equalizer Using the 56311

; Copyright (c) MOTOROLA 2
; Semi conduc
; Digital Si

000
tor
gnal

Products Sector

Processi ng Division

EEE R R R Sk Sk S R S R
i

R R R R R R R R R R R R R R R

; Filter Gain (G Coefficients

EEE R R Sk Sk Sk Sk R S R
i

0.

BEEBEEEE BEBEEEEE 88888888 8888888SE

Ceooo0o0o00o

-0.
-0.
- 0.
- 0.
-0.
-0.
- 0.
- 0.

-0.
- 0.
- 0.
-0.
-0.
- 0.
- 0.

200
187
171
160
150
137
114
103

092
080
067
051
039
027
015
000

000
030
060
090
120
150
180
210

250
290
340
380
460
540
750
999

@ MOTOROLA Implementing a 10-Band Stereo Equalizer

33

Coefficients and Gain Table Files

Example 17. Volume Gain Table

ckkkhk kKA AR AR Ak Ak hhhkhkhkhkhkhkhkhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhkhkhkhkhhhhkhkkk*x
i

; Vol ume_Gai n. ASM
; Digital Stereo 10-band Graphic Equalizer Using the 56311

; Copyright (c) MOTOROLA 2000
; Sem conduct or Products Sector
; Digital Signal Processing Division

EEE R R R Sk Sk Sk S R R R R
i

R R R R R R R R R R R R R

; Volume Gain (V) Coefficients

EEE R R Sk SR Sk Sk kR S
i

$1FFB0OO
$1CE300
$1AD300
$18C300
$16B300
$14A300
$129300
$108300

$0E7300
$0C6300
$0A5300
$084300
$063300
$042300
$021300
$000300

$000000
$110000
$220000
$330000
$440000
$550000
$660000
$770000

$880000
$990000
$AA0000
$BB0000
$CC0000
$DD0000
$EE0000
$FF0000

BEEBEEEE BEBEEEEE 88888888 B8888888SE

34 Implementing a 10-Band Stereo Equalizer

@ MOTOROLA

References

V4 References

This application note refers to the following resources:

« DSP56311 User's ManuabSP56311UM/D

« DSP56311 technical data sheet, DSP56303/D

« Digital Sereo 10-Band Graphic Equalizer Using the DSP56001, APR2/D

e Programming the C4218 CODEC for use with DSP56300 Devices, AN1790/D

« Implementing IIR/FIR Filters with Motorola’s DSP56000/DSP5600RR7/D, Rev. 2
Y ou can download the Motorola documents from the Web at the following URL.:

http://ww. not. com SPS/ DSP

@ MOTOROLA Implementing a 10-Band Stereo Equalizer 35

OnCE, Digital DNA, and the DigitalDNA logo are trademarks of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can
and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must
be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support life, or for any other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola
and (4] are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE JAPAN Home Page

Motorola Literature Distribution Motorola Japan Ltd. http://www.mot.com/SPS/DSP

P.O. Box 5405 SPS, Technical Information Center

Denver, Colorado 80217 3-20-1, Minami-Azabu, Minato-ku DSP Helpline

1-303-675-2140 Tokyo 106-8573 Japan http://www.motorola-dsp.com/contact
1-800-441-2447 81-3-3440-3569 email: dsphelp@dsp.sps.mot.com
Technical InformationCenter ASIA/PACIFIC

1-800-521-6274 Motorola Semiconductors H.K. Ltd.

Silicon Harbour Centre
2 Dai King Street

Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

@ MOTOROLA
AN2110/D

	Cover
	1 Filter Design
	2 Development Environment
	2.1 Personal Computer Running Windows NT® 4.0
	2.2 Suite56 Parallel Command Converter
	2.3 Interfacing the PC to the DSP56311EVM
	2.4 Useful Debugging Techniques

	3 Implementation of 10-Band Stereo Equalizer
	3.1 Program Flow and Functionality
	3.1.1 Equalizer Filter and Volume Gain
	3.1.2 Stage 1: DSP Initialization
	3.1.3 Stage 2: Codec/ESSI Initialization and Operation
	3.1.4 Stage 3: SCI Initialization and Operation
	3.1.5 Stage 4: EFCOP Memory Initialization and DMA Setup
	3.1.6 Stage 5: Equalizer Knob Value Initialization
	3.1.7 Stage 6: Set up Registers R0 to R7
	3.1.8 Stage 7, 8, 10, and 12: Codec Operation
	3.1.9 Stage 9 and 11: Process Left/Right Input
	3.1.10 Stage 13 and 14: Setting Knob and Main Volume Gain Values

	4 Equalizer Graphical User Interface (GUI)
	4.1 GUI Operation
	4.2 GUI Development
	4.2.1 Equalizer Form
	4.2.2 Frequency Table Form
	4.2.3 Communications Port Settings Form

	5 Using the EFCOP in Multichannel Mode
	5.1 EFCOP Registers
	5.2 EFCOP Programming for Multichannel Mode
	5.2.1 FIR Filter Type
	5.2.2 IIR Filter Type
	5.2.3 Memory Configuration

	6 Coefficients and Gain Table Files
	7 References
	Disclaimer and Contact Information

