

DSP56300 Assembly Code Development
Using the Motorola Toolsets

by

Ralph Lansford

Motorola, Incorporated
Semiconductor Products Sector
6501 William Cannon Drive West
Austin, TX 78735-8598

 OnCE and Mfax are trademarks of Motorola, Inc.

© MOTOROLA INC., 1998

Order this document by: APR30/D
 Motorola reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design. Motorola does not assume any liability arising out of the application or
use of any product or circuit described herein; neither does it convey any license under its patent rights
nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur.
Should Buyer purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc.
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

TABLE OF CONTENTS

SECTION 1 INTRODUCTION . 1-1
1.1 INTRODUCTION . 1-3
1.2 TERMS AND DEFINITIONS . 1-3
1.3 SCOPE. 1-4

SECTION 2 SOFTWARE DEVELOPMENT FLOW 2-1
2.1 SOFTWARE DEVELOPMENT FLOW . 2-3
2.1.1 The “make” Function . 2-3
2.1.2 Filename Conventions . 2-3
2.1.3 Target Boards . 2-4
2.2 SHARED TOOLSET RESOURCES. 2-6

SECTION 3 SOFTWARE BUILD PROCESS 3-1
3.1 INTRODUCTION . 3-3
3.2 PROJECT MAKEFILE. 3-4
3.2.1 UNIX Example . 3-4
3.2.2 Porting from UNIX to DOS. 3-7
3.3 ASSEMBLY CODE FILES . 3-8
3.4 LINKER FILES . 3-13
3.5 LISTING FILES . 3-15
3.6 EXECUTABLE FILE . 3-20

SECTION 4 USAGE OF SIMULATOR VERSUS DEBUGGER. . . . 4-1
4.1 OVERVIEW . 4-3
4.2 RELATIVE ADVANTAGES . 4-3
4.3 USER COMMAND DIFFERENCES . 4-4

SECTION 5 HELPFUL CODING AND DEBUGGING TIPS. 5-1
5.1 ASSEMBLY CODING. 5-3
5.1.1 Using the One-Line Assembler . 5-3
5.1.2 Using the Help Command for Registers 5-4
5.2 DEBUGGING . 5-7
MOTOROLA DSP56300 Assembly Code Development iii

iv DSP56300 Assembly Code Development MOTOROLA

LIST OF FIGURES

Figure 2-1 Assembly Code Development Flow. 2-5

Figure 3-1 File Hierarchy for Example Software Project. 3-3

Figure 3-2 makefile Components. 3-6
MOTOROLA DSP56300 Assembly Code Development v

vi DSP56300 Assembly Code Development MOTOROLA

LIST OF TABLES

Table 2-1 Shared Toolset Resources . 2-6

Table 4-1 Input and Output Commands: Simulator vs Debugger 4-6
MOTOROLA DSP56300 Assembly Code Development vii

viii DSP56300 Assembly Code Development MOTOROLA

LIST OF EXAMPLES

Example 3-1 makefile Listing . 3-5

Example 3-2 Shell Script for Multi-File UNIX to DOS Conversion 3-7

Example 3-3 makefile Explicit Rule Syntax Comparison . 3-8

Example 3-4 app1.asm . 3-9

Example 3-5 equates.asm . 3-11

Example 3-6 Illegal Forward References with Non-Included Equates 3-11

Example 3-7 app1_subs.asm . 3-12

Example 3-8 com_f1.asm . 3-12

Example 3-9 com_f2.asm . 3-13

Example 3-10 app1.cli . 3-14

Example 3-11 app1.ctl . 3-15

Example 3-12 app1.lst . 3-16

Example 3-13 app1.map . 3-18

Example 3-14 Executable Image Viewed from Simulator 3-20

Example 5-1 Simulator Confirmation of Legal Instruction 5-3

Example 5-2 Simulator Alert of Illegal Register . 5-3

Example 5-3 Simulator Alert of Illegal Addressing . 5-4

Example 5-4 Simulator Generation of Register Template 5-4

Example 5-5 Register Template Saved in File . 5-5
MOTOROLA DSP56300 Assembly Code Development ix

Example 5-6 Simulator Output of Register Values .5-6

Example 5-7 Register Display Used in Code Comments .5-6

Example 5-8 Simple Command File Pair .5-7

Example 5-9 Nested Command Files .5-7
x DSP56300 Assembly Code Development MOTOROLA

SECTION 1

INTRODUCTION

Introduction

1.1 INTRODUCTION .1-3
1.2 TERMS AND DEFINITIONS .1-3
1.3 SCOPE .1-4
1-2 DSP56300 Assembly Code Development MOTOROLA

Introduction

Introduction

1.1 INTRODUCTION

The purpose of this application report is to provide integrated supplementary
information for the Motorola assembly code toolsets used for the Motorola DSP56300
family of Digital Signal Processors (DSPs). It covers various aspects of the DSP56300
Assembler, Linker, Simulator, and debugger. A detailed example is supplied for
management of multifile assembly code projects in the UNIX environment.
Overview-level information concerning the Simulator and the Application Development
System (ADS) is related, along with helpful tips for facilitating software development
that will be especially beneficial to users new to the toolset.

It is assumed that the reader already has the user’s manuals for the Motorola DSP56300
Assembler, Linker, Simulator, and debugger. These may be found on the Motorola DSP
World Wide Web site, beginning at the following address:

 http://www.motorola-dsp.com/documentation

Note: The example code presented in this application report may be downloaded
from the Motorola DSP website at the following address:

http://www.motorola-dsp.com/documentation/appnotes

1.2 TERMS AND DEFINITIONS

A number of tools are described in this document and represented by acronyms. The
following list provides a reference point for the four terms most crucial to the reader’s
understanding of the processes under examination.

• ADM—Application Development Modules. This is the DSP evaluation board in the
ADS. The ADM generally does not contain analog/digital conversion hardware.

• ADS—Application Development System. This is a multiboard DSP development
system consisting of a host card (available for several platforms), a Command
Converter (universal for all platforms and all Motorola DSPs), an ADM, and the
Motorola debugger (in both text-based and Graphical User Interface versions). As
opposed to an Evaluation Module system, ADS versions are available for several
platforms, but the ADS generally does not include analog/digital conversion
hardware.

• CLAS—Callable modules Linker relocatable Assembler and Simulator. This includes
the Assembler, Linker, Simulator (in both text-based and Graphical User Interface
versions), librarian, lint, and various object file format conversion utilities.
MOTOROLA DSP56300 Assembly Code Development 1-3

Introduction

Scope

C source code is included, allowing the user to integrate these tools into
customer-designed tools by using the callable modules, which the Linker may
then link into an executable object file.

• DSP563xxEVM—Evaluation Module. This is a single board, generally including a
codec (analog/digital converter). It comprises the hardware portion of a low-cost
DSP evaluation system that employs an IBM-compatible PC as the development
host. The Domain debugger is the software portion of the evaluation module
system.

1.3 SCOPE

This document addresses the use of the following software tools:

• UNIX and DOS-based “make” utilities

• From “CLAS” package:

– Motorola DSP56300 Assembler (asm56300)

– Motorola DSP Linker (dsplnk)

– Motorola DSP56300 Simulator (sim56300/gui56300)

• From “ADS” package:

– Motorola DSP56300 debugger (ads56300/gds56300)

This document does NOT address the use of the following software tools:

• C Compilers (e.g., Motorola “g563c”)

• Domain debugger (for Evaluation Modules; runs only on IBM PC-compatible
computer)

Note: The Domain debugger implements the same features as the Motorola
debugger but uses a somewhat different interface.
1-4 DSP56300 Assembly Code Development MOTOROLA

SECTION 2

SOFTWARE DEVELOPMENT FLOW

Software Development Flow

2.1 SOFTWARE DEVELOPMENT FLOW. .2-3
2.1.1 The “make” Function. .2-3
2.1.2 Filename Conventions .2-3
2.1.3 Target Boards .2-4
2.2 SHARED TOOLSET RESOURCES .2-6
2-2 DSP56300 Assembly Code Development MOTOROLA

Software Development Flow

Software Development Flow

2.1 SOFTWARE DEVELOPMENT FLOW

Figure 2-1 illustrates the software development process flow for DSP56300 assembly
code using the UNIX environment and an ADS system. Except for the Domain
debugger and the C Compiler, the most commonly used software and hardware tools
are included. Several noteworthy aspects in this figure are discussed in Section 2.1.1
through Section 2.1.3.

2.1.1 The “make” Function

The “make” function is used to provide integrated control over the entire assembly and
linking process, also called the “build” process. The UNIX file called “makefile”
contains all pertinent control information the UNIX “make” command needs to actuate
this process. An example makefile is shown in Example 3-1 on page 3-5.

2.1.2 Filename Conventions

The following filename conventions are observed in Figure 2-1 on page 2-5:

• Assembler and Linker input and output files designated by command line
options are shown along with the associated command line option (e.g., “-L” to
generate a listing file).

• Note that for a single source file project, the linking process may be bypassed by
including the Assembler command line option “-A” (Absolute object file).

• The Linker command line file may be arbitrarily named; “*.cli” is shown in the
figure as an example choice.

• The srec output filename extensions designate the target memory space for the
file.
MOTOROLA DSP56300 Assembly Code Development 2-3

Software Development Flow

Software Development Flow

2.1.3 Target Boards

• The Command Converter version must be at least 5.0 for connection with a
DSP563xx target and at least 6.0 for a multi-DSP connection (as is depicted in the
user target board in Figure 2-1).

• Three different types of targets may be used (ADM, Evaluation Module, or user
target board). Only one such target may be used at a given time; this is done by
connecting the On-Chip Emulation (OnCE™)/ Joint Test Action Group (JTAG)
cable from the Command Converter to the JTAG connector on the chosen target
board. The ability to use either an ADM or an Evaluation Module allows the
usage of all devices in the DSP56300 family with the same toolset and platform. It
may be necessary to modify jumper connections on an Evaluation Module in
order to reconfigure it for connection to a Command Converter. The Evaluation
Module User’s Manual should be consulted for reconfiguration instructions.

• A multi-DSP connection uses a daisy-chain configuration, in which TDO (Test
Data Output) from a DSP’s JTAG port is connected to TDI (Test Data Input) in the
JTAG port of the next DSP in the chain. The other JTAG signals from the
Command Converter go to all target DSPs in parallel (not shown in Figure 2-1).
The Motorola ADS debugger supports JTAG daisy-chains of up to twenty-four
DSPs.

• A development host computer, which communicates with a target DSP through the
DSP’s JTAG port, is indicated in Figure 2-1. This should not be confused with a
target host computer, used in some applications to interface with a target DSP
through the DSP’s host port.
2-4 DSP56300 Assembly Code Development MOTOROLA

Software Development Flow

Software Development Flow

Figure 2-1 Assembly Code Development Flow

Code Module Files Equate Files
Assembly Files

Assembler
(asm56300)

Map Files

(*.asm)

“-L”

“-B” (w/o “-A”)
“-G” (Debug)

Relocatable

Linker
(dsplnk)

(*.map)

Executable

ADS Debugger
(ads56300: Text)
(gds56300: GUI)

Linker Control File
(*.ctl)

Command Line File
(*.cli)

“-M”

“-B”
“-G” (Debug)

“-F”

“-R”

“makefile”

“make” Utility

S-record Files
(*.P, *.X, *.Y, *.L)

EPROM

Host Card
(DSPxxHOST)

Universal

Hardware:

DSP563xx EVM User
DSPDSP

TDI

TDI

TDO

TDO

JTAG
JTAGJTAG

Object Files
(*.cln)

Object File
(COFF Format:

*.cld)

Application

Target
Board

Development Host Computer
(PC, Sun, HP)

 OnCE™/JTAG
Command Converter

(DSPCOMMAND)

Document FirmwareSoftware:

CLAS

Simulator
(sim56300: Text)
(gui56300: GUI)

S-record Utility
(srec)

DSP563xx ADM

ADS

Listing Files
(*.lst)

AA1049
MOTOROLA DSP56300 Assembly Code Development 2-5

Software Development Flow

Shared Toolset Resources
2.2 SHARED TOOLSET RESOURCES

 Table 2-1 shows how software and hardware tools are shared among various DSP
device types. Examples of Motorola DSP families are the DSP56000, DSP56300, and
DSP56600 families.

Table 2-1 Shared Toolset Resources

Tool Applicability Software Tools Hardware Tools

For all DSPs Linker, utilities host card, Command Converter

Per DSP family Assembler, Simulator,
ADS debugger

(n/a)

Per DSP device (n/a) ADM, Evaluation Module
2-6 DSP56300 Assembly Code Development MOTOROLA

SECTION 3

SOFTWARE BUILD PROCESS

Software Build Process
3.1 INTRODUCTION .3-3
3.2 PROJECT MAKEFILE .3-4
3.2.1 UNIX Example. .3-4
3.2.2 Porting from UNIX to DOS .3-7
3.3 ASSEMBLY CODE FILES. .3-8
3.4 LINKER FILES. .3-13
3.5 LISTING FILES .3-15
3.6 EXECUTABLE FILE .3-20
3-2 DSP56300 Assembly Code Development MOTOROLA

Software Build Process

Introduction
3.1 INTRODUCTION

In this section an example software project is used to illustrate the build process
(assembly and linking) outlined in the previous section. The sample files have been
written to demonstrate key concepts while remaining as simple and short as possible.
This section uses italics for files and boldface for commands.

Figure 3-1 illustrates the involved file hierarchy for the project. In this figure, files output
from the Assembler and Linker are italicized. The file makefile is used to build two
different executable applications, app1.cld and app2.cld, each of which utilizes several
code modules (assembly source files). Some code modules are particular to a given
application (those in the app1/ and app2/ directories), while others are common to both
applications (those in proj_dir/ and common/). The makefile directs the Assembler to
put listing files in list/, and object files in obj/. It also tells the Linker to put the memory
map files in the directory related to the project being built (app1/ or app2/).

Figure 3-1 File Hierarchy for Example Software Project

The following sections discuss the files necessary to build the app1.cld application but
not the app2.cld application, as that information would be redundant.

makefile

app1.cld
app2.cld

app1.asm
app1subs.asm
app1.cli
app1.ctl

app1.map

com_f1.asm
com_f2.asm

app1.cln
app1subs.cln
app2.cln
app2subs.cln
com_f1.cln
com_f2.cln

app1.lst
app1subs.lst
app2.lst
app2subs.lst
com_f1.lst
com_f2.lst

app2.asm
app2subs.asm
app2.cli
app2.ctl

app2.map

equates.asm

proj_dir/

obj/app2/ common/app1/ list/

AA1050
MOTOROLA DSP56300 Assembly Code Development 3-3

Software Build Process

Project makefile
3.2 PROJECT MAKEFILE

Subsections of Section 3.2 explain both the use of makefile in the Sun UNIX environment
and the means by which it can be ported to DOS for IBM-compatible PC use.

3.2.1 UNIX Example

A listing of the makefile, which runs under the SUN implementation of the UNIX make
command, is contained in Example 3-1. The mechanics of the makefile are covered in
Figure 3-2 on page 3-6. The applications app1.cld and app2.cld are created from the
UNIX command line prompt by making proj_dir/ the working directory and then typing
make app1 or make app2, respectively. The cleanup option can be invoked with make
clean in order to remove the Assembler output files. This is useful when a rebuild is
desired to use dependency files that have not been changed since the previous build of
the same application. All path specifications in the makefile are relative to the directory
containing the makefile.
3-4 DSP56300 Assembly Code Development MOTOROLA

Software Build Process

Project makefile
Example 3-1 makefile Listing

#---
file: "makefile"
version: 961105
target files: app1.cld, app2.cld
#---
host: {host type}
op sys: {name / version}
assembler: asm56300 {version}
linker: dsplnk {version}
target: 563xx
target bd: {adm / evm / user target board}
#---

app1: app1.cld

app2: app2.cld

app1.cld:app1files\
 commonfiles

dsplnk -fapp1/app1.cli

app2.cld:app2files\
commonfiles

dsplnk -fapp2/app2.cli

app1files:obj/app1.cln\
obj/app1_subs.cln

app2files:obj/app2.cln\
obj/app2_subs.cln

commonfiles:obj/com_f1.cln\
obj/com_f2.cln

obj/%.cln : app1/%.asm
asm56300 -bobj/$*.cln -llist/$*.lst app1/$*

obj/%.cln : app2/%.asm
asm56300 -bobj/$*.cln -llist/$*.lst app2/$*

obj/%.cln : common/%.asm
asm56300 -bobj/$*.cln -llist/$*.lst common/$*

clean:
rm *.cld obj/*.cln list/*.lst
MOTOROLA DSP56300 Assembly Code Development 3-5

Software Build Process

Project makefile
The various components of the makefile are described in Figure 3-2. In this figure, only
the parts of the file used to build app1.cld are shown. The figure shows the chain of
targets and dependencies, whereby a dependency in one link of the chain becomes a
target in the next link of the chain. Note that the command lines passed to the operating
system shell (such as the assembly and link command lines) must have a tab and not a
space as the very first character or the make process will fail, giving a “Fatal error in
reader” message.

Figure 3-2 makefile Components

The syntax required in a makefile may differ according to the make implementation
employed. The make implementations vary according to the platform used (e.g., DOS
vs. UNIX) and the vendor’s implementation of the operating system being run on a
given platform.

Target

Dependency List

Line Continuation Character

Dynamic Macro for BasenameTarget Dependency

Command

Target List Terminator

Pattern Matching Wildcard Metacharacter

of Current Target

Prefix (Location)

Suffix (Class)

obj/%.cln : common/%.asm

asm56300 -bobj/$*.cln -llist/$*.lst common/$*

commonfiles: obj/com_f1.cln \
obj/com_f2.cln

Explicit Rule

app1files: obj/app1.cln \
obj/app1_subs.cln

app1.cld: app1files \
commonfiles

dsplnk -fapp1/app1.cli

app1: app1.cld

Dependency

AA1051

obj/%.cln : app1/%.asm
app1/$*asm56300 -bobj/$*.cln -llist/$*.lst
3-6 DSP56300 Assembly Code Development MOTOROLA

Software Build Process

Project makefile
In the UNIX environment, additional information on the makefile and the make
command may be obtained from the on-line manual pages (man make at the UNIX
prompt).

3.2.2 Porting from UNIX to DOS

If the project is being used in the DOS environment, the following changes must be
made:

1. Change all directory and filenames to legal DOS names and use “\” instead of
“/” to denote directories. This would apply to the files themselves and to the file
references in the makefile.

2. From the UNIX environment, convert each involved file to the DOS format using
the unix2dos command. This just changes the carriage return/line feed format
for end-of-line designators. Since unix2dos can only convert one file at a time, the
following shell script may prove handy:

Note: The UNIX dos2unix command performs the opposite conversion. This
is useful for porting from DOS to UNIX.

3. Convert the makefile explicit rule syntax to the format required by the chosen DOS
make implementation. For example, the following comparison illustrates the
differences in explicit rule syntax between the SunOS make (UNIX) and the
Borland make (DOS).

Example 3-2 Shell Script for Multi-File UNIX to DOS Conversion

#! /bin/csh

foreach FILE (̀ /bin/ls̀)
 if (! -d $FILE) then # don’t try to convert nested directories
 unix2dos $FILE $FILE
 endif
end

exit 0
MOTOROLA DSP56300 Assembly Code Development 3-7

Software Build Process

Assembly Code Files
3.3 ASSEMBLY CODE FILES

In this section, examples are given in dummy code to show the assembly source code
files. Note that like C Compilers, the Assembler is case-sensitive.

Assembly code file app1.asm (Example 3-4) contains several sections. Sections are
useful because the Linker can independently relocate them in memory (e.g., to ensure
that frequently run code is placed in faster internal memory). They are also useful for
privacy implementations (limiting the scope of variables).

Example 3-3 makefile Explicit Rule Syntax Comparison

 SunOS make (UNIX):

 obj/%.cln : app1/%.asm
asm56300 -bobj/$*.cln -llist/$*.lst app1/$*

Borland make (DOS):

 {app1\}.asm.cln:
asm56300 -bobj\$&.cln -llist\$&.lst app1\$*
3-8 DSP56300 Assembly Code Development MOTOROLA

Software Build Process

Assembly Code Files

Example 3-4 app1.asm

;---
; file: "app1.asm"
; revision: 961105
; target file: app1.cld
; description: main file for "app1" application; demonstrates multifile
; assembly coding techniques
;---

;...
section app1_vec

xref start ; reference to external symbol

org p:0 ; beginning of exception "vector" table
jmp start

ds $fe ; define storage block (available for
; remainder of vector table)

endsec
;...

section app1_main

include 'equates.asm'

xdef start ; symbol declaration for external usage
xref a1_sub1,cf1_sub,cf2_sub,data1,data2

org p:START ; absolute origin (linker cannot relocate)

start move #>VAL1,a1 ; move immediate value to reg, rt justified

jsr a1_sub1 ; jump to (external) subroutine
jsr cf1_sub
jsr cf2_sub
move y1,x:data1
jmp start

endsec
;...
 section app1_data

xdef data1,data2

org x:

data1 ds 1
data2 ds 1

endsec
;...
MOTOROLA DSP56300 Assembly Code Development 3-9

Software Build Process

Assembly Code Files
Relocatable portions of code or data may be designated by using an indefinite origin for
a given memory space (such as “x:”). The first such portion in a given assembly source
file will be mapped beginning at location zero in the specified memory space in the
relocatable image that the Assembler produces. The Linker may relocate this portion of
the code or data to a new address in the executable image. The relocation may be seen by
comparing the *.lst and *.map files.

Privacy limitations may be imposed on symbols (which are memory locations or values,
such as equates). Symbols defined within a section are not normally visible outside that
section. The Assembler directive xdef is used inside a “source” section to define the
symbol for use in another section (the “destination” section). The xref directive is used
inside the “destination” section to reference symbols defined using xdef in the “source”
section. These two sections may or may not be in the same file.

An alternate method is to declare a symbol as a global inside a section or to define the
symbol outside any section. This results in a globally defined symbol that can be
referenced from other sections without using xref. More detailed information on this
and related subjects may be found in the Software Project Management section in the
Motorola DSP Assembler Reference Manual.

In a section, externally defined symbols result in “holes” in the relocatable image file
generated by the Assembler. These “holes” are unresolved external references. The
Linker must then “plug” the holes by resolving the references.

Example 3-5 depicts a minimal equate file to illustrate the process of equate file inclusion
in the assembly source code files. Note that this file is included locally (inside a section)
in app1.asm, app1subs.asm, com_f1.asm, and com_f2.asm. This results in the multiple
listings of “START” and “VAL1” as absolute local variables in the “Symbol Listing by
Name” section of app1.map (Example 3-13). If equate.asm were included globally (outside
any section) in more than one source file used in a given build, the Linker would give a
“Duplicate global symbol” error.

Practical equate files are often long enough that the programmer may want to suppress
their display in the listing file created for each source file that includes them. This
redundant information may be eliminated by using the nolist Assembler directive
immediately before the include directive in the source file and the list directive
immediately afterward.
3-10 DSP56300 Assembly Code Development MOTOROLA

Software Build Process

Assembly Code Files

An alternate way of using an equate file is to explicitly specify it in the build process (in
makefile) rather than including it in each source file that uses it. The result is assembly of
the equate file into a separate relocatable image file (*.cln). This could be referred to as
the “discrete equate file method”, as opposed to the “included equate file method”
previously described.

This method has the advantage of equate file inclusion in the dependency process. If the
equate file is edited, a succeeding build will automatically cause any files dependent on
it to be reassembled and relinked (for the application being rebuilt).

However, this method has a major disadvantage in terms of reuse of the equates. Even if
the equates to be reused are global symbols or are referenced using xdef/xref, they can
not be used in expressions in separately assembled files. Although the Linker can fill
“holes” in the relocatable image files using external references, it is not designed to
perform any calculations using the value of the external reference. The Assembler will
catch this error before the process gets to the link stage and will issue a warning. Using
the “discrete equate file method”, the following statements would cause the Assembler
to give an error saying, “Expression contains forward references“.

Example 3-5 equates.asm

;---
; file: "equates.asm"
; revision: 961105
; description: equate file for "app1" and "app2" applications
;---

START equ $100
VAL1 equ 1

Example 3-6 Illegal Forward References with Non-Included Equates

org p:START+$100 ; The file defining START and VAL1 is not included
 move #>VAL1+1,a1 ; in this file. All three of these statements
VAL2 equ VAL1+1 ; will result in errors during assembly.
MOTOROLA DSP56300 Assembly Code Development 3-11

Software Build Process

Assembly Code Files
c

Example 3-7 app1_subs.asm

;---
; file: "app1_subs.asm"
; revision: 961105
; description: subroutines used for "app1" application
;---

;...
section app1_subs

include 'equates.asm' ; this allows equates from the included file to
; be reused in this file in expressions,
; including nested equates

xdef a1_sub1

org p:
a1_sub1 move #>VAL1+1,b1 ; equate reused in an expression

rts

endsec

;...

Example 3-8 com_f1.asm

;---
; file: "com_f1.asm"
; revision: 961105
; description: routines common to "app1" and "app2" applications
;---

;...
 section com_f1

include 'equates.asm'

xdef cf1_sub

org p:
cf1_sub move #>VAL1+$c0,x1

rts

endsec

;...
3-12 DSP56300 Assembly Code Development MOTOROLA

Software Build Process

Linker Files
3.4 LINKER FILES

Example 3-10 shows the Linker command line extension file app1.cli , which may be used
to prevent unusably long command lines (especially when large numbers of files are
involved). Each relocatable image file (*.cln) must be listed. The -p option is used to
specify that the *.cln files are in the obj/ directory. (This is the relative path from the
directory containing the makefile.)

Example 3-9 com_f2.asm

;---
; file: "com_f2.asm"
; revision: 961105
; description: routines common to "app1" and "app2" applications
;---

;...
section com_f2

include 'equates.asm'

xdef cf2_sub

org p:
cf2_sub move #>VAL1+$c1,y1

rts

endsec

;...
MOTOROLA DSP56300 Assembly Code Development 3-13

Software Build Process

Linker Files
Example 3-11 lists the Linker control file app1.ctl. The Linker provides various means of
generating warning messages if code “overflows” into undesired memory regions
(which either may be allocated for other purposes or may not physically exist in the
target system). The region command specifies the size of an allocated block and is used
in conjunction with the base command, which denotes the beginning location for the
block. (Related commands are memory, which specifies the upper boundary of an
available region, and reserve, which specifies both the lower and upper boundaries of an
unavailable region.)

Using the Linker section command in the format shown in the figure, the sections are
linked in the order listed. (The result of this can be seen in the Section Link Map by
Address table in app1.map in Example 3-13.) The linking order can be significant in some
cases. For example, sections containing relocatable portions of code or data that should
be placed in lower memory (i.e., faster internal memory) should be listed first. Section
names may be the same or different from file names.

If a*.ctl file is not used, the Linker will link sections in correspondence to the order in
which the source file names are provided to the Linker and the order of the sections in
each source file.

Example 3-10 app1.cli

;---
; file: app1.cli
; revision: 961105
; description: linker command line extension file for "app1" application
;---

-b app1.cld
-mapp1/app1.map
-r app1/app1.ctl
-p obj
app1.cln
app1_subs.cln
com_f1.cln
com_f2.cln
3-14 DSP56300 Assembly Code Development MOTOROLA

Software Build Process

Listing Files
3.5 LISTING FILES

Example 3-12 and Example 3-13 show the Assembler listing (app1.lst) for the main
application file and Linker listing (app1.map) for the application, respectively.

Example 3-11 app1.ctl

;---
; file: app1.ctl
; revision: 961105
; description: linker control file for "app1" application
;---

reserve pi:$400..$4FF

region region_name1 p:$400
 base p:$0

 section app1_vec
 section app1_main
 section app1_subs

 section com_f2 ; these two sections listed in reverse order from that
 section com_f1 ; used in app1.cli; linker uses order shown here

endr
MOTOROLA DSP56300 Assembly Code Development 3-15

Software Build Process

Listing Files
Example 3-12 app1.lst

Motorola DSP56300 Assembler Version 6.1.1 96-11-06 09:02:02 app1/app1.asm
 Page 1

1 ;--
2 ; file: "app1.asm"
3 ; revision: 961105
4 ; target file: app1.cld
5 ; description: main file for "app1" application;

 demonstrates multifile
6 ; assembly coding techniques
7 ;--
8
9 ;..
10 section app1_vec
11
12 xref start

; reference to external symbol
13
14 P:000000 org p:0

; beginning of exception "vector" table
15 P:000000 0AF080 jmp start
 000100
16
17 P:000002 ds $fe

; define storage block (available for
18 ; remainder of vector table)
19
20 endsec
21
22 ;..
23 section app1_main
24
25 include 'equates.asm'

; allows "nested equates"
26 ;--
27 ; file: "equates.asm"
28 ; revision: 961105
29 ; description: equate file for "app1" and "app2"

 applications
30 ;--
31
32 000100 START equ $100
33 000001 VAL1 equ 1
34
3-16 DSP56300 Assembly Code Development MOTOROLA

Software Build Process

Listing Files
35 xdef start
 ; symbol declaration for external usage

36 xref a1_sub1,cf1_sub,cf2_sub,data1,data2
37
38 P:000100 org p:START
 ; absolute origin (linker cannot relocate)
39
40 P:000100 54F400 start move #>VAL1,a1
 ; move immediate value to reg, rt justified
 000001
41 P:000102 0BF080 jsr a1_sub1
 ; jump to (external) subroutine
 000000
42 P:000104 0BF080 jsr cf1_sub
 000000
43 P:000106 0BF080 jsr cf2_sub
 000000
44 P:000108 477000 move y1,x:data1
 000000
45 P:00010A 0C0100 jmp start
46
47 endsec
48
49 ;..
50 section app1_data
51
52 xdef data1,data2
53
54 X:000000 org x:
55
56 X:000000 data1 ds 1
57 X:000001 data2 ds 1
58
59 endsec
60
61 ;..

0 Errors
0 Warnings

Example 3-12 app1.lst (Continued)
MOTOROLA DSP56300 Assembly Code Development 3-17

Software Build Process

Listing Files
Example 3-13 app1.map

Motorola DSP Linker Version 6.1.1 96-11-06 09:02:04 app1/app1.map Page 1

 Section Link Map by Address

X Memory (0 - default)

Start End Length Section
000000 000001 2 app1_data
000002 FFFFFF 16777214 UNUSED

P Memory (0 - default)

Start End Length Section
000000 0000FF 256 app1_vec Abs
000100 00010A 11 app1_main Abs
00010B 00010D 3 app1_subs
00010E 000110 3 com_f2
000111 000113 3 com_f1
000114 0003FF 748 UNUSED
000400 0004FF 256 RESERVE
000500 FFFFFF 16775936 UNUSED

 Section Link Map by Name

Section Memory Start End Length
GLOBAL None
RESERVE P (0) 000400 0004FF 256
app1_data X (0) 000000 000001 2
app1_main Abs P (0) 000100 00010A 11
app1_subs P (0) 00010B 00010D 3
app1_vec Abs P (0) 000000 0000FF 256
com_f1 P (0) 000111 000113 3
com_f2 P (0) 00010E 000110 3

3-18 DSP56300 Assembly Code Development MOTOROLA

Software Build Process

Listing Files
 Symbol Listing by Name

Name Type Value Section Attributes
START............int 000100 app1_main ABS LOCAL
START............int 000100 app1_subs ABS LOCAL
START............int 000100 com_f1 ABS LOCAL
START............int 000100 com_f2 ABS LOCAL
VAL1.............int 000001 app1_main ABS LOCAL
VAL1.............int 000001 app1_subs ABS LOCAL
VAL1.............int 000001 com_f1 ABS LOCAL
VAL1.............int 000001 com_f2 ABS LOCAL
a1_sub1..........int P:00010B app1_subs REL EXTERN
cf1_sub..........int P:000111 com_f1 REL EXTERN
cf2_sub..........int P:00010E com_f2 REL EXTERN
data1............int X:000000 app1_data REL EXTERN
data2............int X:000001 app1_data REL EXTERN
start............int P:000100 app1_main ABS EXTERN

 Symbol Listing by Value

Value Name Value Name Value Name
000000 data1 000001 VAL1 000001 VAL1
000001 VAL1 000001 VAL1 000001 data2
000100 START 000100 START 000100 START
000100 START 000100 start 00010B a1_sub1
00010E cf2_sub 000111 cf1_sub

Example 3-13 app1.map (Continued)
MOTOROLA DSP56300 Assembly Code Development 3-19

Software Build Process

Executable File
3.6 EXECUTABLE FILE

Example 3-14 shows the executable image (app1.cld) as viewed from the Simulator. The
actual characters entered at the Simulator command line are displayed in boldface. For
illustrative purposes, the different source code sections have been manually separated
by blank lines.

Example 3-14 Executable Image Viewed from Simulator

MOTOROLA DSP56300 SIMULATOR: VERSION 6.1.6 10-22-96

r adix hex
l oad app1
Loading file:./app1.cld

di sassemble p:0#4
p:$000000 0af080 000100 = jmp >$100 ; p:start
p:$000002 000000 = nop
p:$000003 000000 = nop
p:$000004 000000 = nop

di sassemble p:100#10
p:$000100 54f400 000001 = move #>$1,a1
p:$000102 0bf080 00010b = jsr >$10b ; p:a1_sub1
p:$000104 0bf080 000111 = jsr >$111 ; p:cf1_sub
p:$000106 0bf080 00010e = jsr >$10e ; p:cf2_sub
p:$000108 477000 000000 = move y1,x:>$0 ; x:data1
p:$00010a 0c0100 = jmp <$100 ; p:start

p:$00010b 55f400 000002 = move #>$2,b1
p:$00010d 00000c = rts

p:$00010e 47f400 0000c2 = move #>$c2,y1
p:$000110 00000c = rts

p:$000111 45f400 0000c1 = move #>$c1,x1
p:$000113 00000c = rts

p:$000114 000000 = nop
p:$000115 000000 = nop
p:$000116 000000 = nop
p:$000117 000000 = nop

quit
3-20 DSP56300 Assembly Code Development MOTOROLA

SECTION 4

USAGE OF SIMULATOR VERSUS
DEBUGGER

Usage of Simulator versus Debugger
4.1 OVERVIEW .4-3
4.2 RELATIVE ADVANTAGES .4-3
4.3 USER COMMAND DIFFERENCES .4-4
4-2 DSP56300 Assembly Code Development MOTOROLA

Usage of Simulator versus Debugger

Overview
4.1 OVERVIEW

The Simulator and debugger both allow comprehensive evaluation of the target DSP as
well as emulation of user algorithms.

The DSP56300 Simulator is based on behavioral level models of the devices and
therefore gives a fully accurate representation of the actual behavior of the device as it
has been designed (for a particular mask set revision). An alternate type of simulation is
based on the design specification for the device. This method was used for the DSP56000
Simulator and results in generally faster simulation times, but in rare cases it can mean a
less accurate representation of the behavior of the actual device.

Because it would serve little purpose to simulate all hardware on the DSP, the DSP56300
Simulator does not cover the entire device. Since the DSP56300 Simulator does not have
to interface with ports on an actual hardware device, it does not emulate the JTAG and
OnCE circuitry in the DSP. Also, the Phase-Locked Loop (PLL) is not emulated, as the
simulation time is based on integral numbers of core clock cycles (as opposed to cycles
on the DSP’s EXTAL clock input pin). Aside from these limitations, the Simulator exactly
simulates all core functions, peripheral actions, pipeline activities, exception processing,
and internal and external memory accesses of the DSP.

The ADS allows the user to exercise all functionality of the target device. This
accessibility comes through control of the OnCE circuitry, which is accessed via the
JTAG interface in the DSP.

4.2 RELATIVE ADVANTAGES

Obviously, the hardware debugger will require far less time than the software Simulator
to execute a given portion of code. However, for certain situations there are advantages
to either method.

The Simulator may be easier to use than the debugger for the following cases:

• Short algorithms (the slowness of the simulation time becomes less of an issue)

• Large files (downloads of large files from the debugger to the target board can
be slow)

• Detailed analysis of complicated internal workings of the DSP, such as usage of
the instruction pipeline
MOTOROLA DSP56300 Assembly Code Development 4-3

Usage of Simulator versus Debugger

User Command Differences
The ADS is necessary, or tends to be more useful, in these situations:

• DSP interfaced with external hardware that can not easily be simulated

• Timing needs investigation with a resolution smaller than single core clock cycles

• Very long algorithms (may take a prohibitively long time to simulate)

• Usage of peripherals which are running much more slowly than the core clock:
the Simulator must execute every core clock cycle, regardless of the peripheral
clock division.

Obviously, there are many other situations in which usage of the actual hardware is
necessary (for observing voltage levels, measuring current consumption, etc.).

4.3 USER COMMAND DIFFERENCES

The commands and usage of the Simulator and debugger are designed to be as close to
identical as possible. However, there are a few differences that are either related to the
nature of simulation or that result from hardware that is not simulated.

• Cxxxxx and host commands—The debugger uses special commands that are
dedicated to the nontarget boards comprising the ADS. The Cxxxxx commands
(cchange, cdisplay, cforce, etc.) are used to perform actions on the Command
Converter board. The host command is used to configure the Host board. These
commands do not exist in the Simulator.

• Display command—Because they are not simulated, the Simulator does not
display the registers in the PLL and JTAG/OnCE subsections of the DSP.
However, the Simulator displays several count registers—for example, clock
cycle and instruction count registers—that are not part of the actual DSP and are
not provided by the debugger.

• Go and break commands—Due to the lack of JTAG/OnCE simulation, the
Simulator handles the go and break commands differently than does the
debugger. The debugger uses the break command to specify the breakpoint
occurrence count (i.e., to stop on the nth occurrence) because this functionality is
built into the OnCE circuitry. The Simulator uses the go command to specify the
breakpoint occurrence count. This allows the user to resume execution and use a
different occurrence count with a single command.

• History command—The history command displays the last 32 executed
instructions along with the addresses from which they were fetched. This
command is available on the Simulator but not the debugger.
4-4 DSP56300 Assembly Code Development MOTOROLA

Usage of Simulator versus Debugger

User Command Differences
• Input and output commands—The debugger needs to use the JTAG/OnCE
interface in order to transfer blocks of data between a file (or the console) in the
development host computer and the target DSP’s internal or external memory. In
the course of these actions, the OnCE module forces the DSP to execute
instructions that actually do the reads or writes of the DSP’s memory. Because
the Simulator bypasses the debug interface by not simulating it, it offers
simplified input and output functions as well as features not included in the
debugger. The Simulator also provides reporting and formatting functions not
available in the debugger, such as instruction timing and history information.
Table 4-1 compares the Simulator and debugger implementations of input and
output.

• Load command—The methodology required to use the load command is subtly
different in the Simulator than it is in the debugger. This issue also involves
various other commands that access external memory locations.

– With the debugger, it is necessary to perform any appropriate initialization of
Bus Interface Unit (BIU) registers before executing a program load that will
result in writes to external memory locations (either program or data). This
must be done because the OnCE module actuates downloads to memory by
forcing core (specifically, Program Control Unit) writes to the designated
addresses, without regard to whether the addresses are internal or external.
The BIU register initialization may be done by explicitly entered debugger
commands, by debugger command files, or by previously executed DSP code.
Note that this must also be done before any other debugger accesses to
external memory locations (display, change, etc.).

– Using the Simulator, no BIU register initialization is necessary before program
loads (or before other Simulator accesses to external memory locations).

– Also note that the BIU must always be initialized before the user code
attempts to access external memory locations (true whether the Simulator or
debugger is used).

• Radix command—The default radix is decimal in the Simulator, but hexadecimal
in the debugger. A possible way to avoid confusion is to begin commonly used
Simulator command files with “radix hex”.

• Reset and force commands—Using the Simulator, the DSP being simulated is
reset with the reset command, and halted by typing control-C. On the debugger,
these functions are performed by using the force command—"force reset", or
"force break", respectively.
MOTOROLA DSP56300 Assembly Code Development 4-5

Usage of Simulator versus Debugger

User Command Differences
Table 4-1 Input and Output Commands: Simulator vs. Debugger

Categories

USER CODE.

Extra instructions needed?
Simulator: No.
Debugger: Yes. The user code must load registers with values that specify file number,

data block size, memory space, and starting location in the target DSP’s memory.
The "debug" instruction must then be executed in the user program.

DATA MOVEMENT.

1. Block moves (address range) implemented?
Simulator: No. The "load" command must be used instead. Loads are fast on the

Simulator, but code must first be assembled into a loadable object file.
Debugger: Yes. Block moves can be useful early in code development, before

peripherals are used. The debugger uses this method (rather than the data stream
method) because large data transfers across a serial link to the host are most
efficient in batch mode.

2. Data stream (single location) implemented?
Simulator: Yes. Several types of data streams are implemented:

Host<—>Single memory address:
• Simulate interface to custom memory-mapped peripherals.
• Bypass on-chip peripherals.
Host<—>Pins:
• To/from a pin or pin group.
Pin<—>Pin:
• Within the same device (interconnected using "input" command).
• Between devices (create up to 32 DSPs using "device" commands; interconnect

using "input" commands).
Memory<—>Memory:
• Transfers may be made between given memory address and memory address

on another simulated DSP. Can be used to simulated dual-ported memory
shared by two DSPs.

Debugger: No.
4-6 DSP56300 Assembly Code Development MOTOROLA

Usage of Simulator versus Debugger

User Command Differences
REPORTING AND FORMATTING.

1. Time information (cycle count) provided?
Simulator: Yes. Timing information may be specified for control ("input" command)

and generated for results ("output" command).
Debugger: No.

2. History info (instruction execution) provided?
Simulator: Yes. Provided by "ouput" command. Can provide more detail than

"history" command (e.g., provides info on wait states and pipeline stalls).
Debugger: No.

3. String format available?
Simulator: Yes. Provided by "output" command. Null-terminated strings (useful for

C code debugging).
Debugger: No.

Table 4-1 Input and Output Commands: Simulator vs. Debugger (Continued)

Categories
MOTOROLA DSP56300 Assembly Code Development 4-7

Usage of Simulator versus Debugger

User Command Differences
4-8 DSP56300 Assembly Code Development MOTOROLA

SECTION 5

HELPFUL CODING AND DEBUGGING
TIPS

Helpful Coding and Debugging Tips
5.1 ASSEMBLY CODING .5-3
5.1.1 Using the One-Line Assembler .5-3
5.1.2 Using the Help Command for Registers5-4
5.2 DEBUGGING. .5-7
5-2 DSP56300 Assembly Code Development MOTOROLA

Helpful Coding and Debugging Tips

Assembly Coding
5.1 ASSEMBLY CODING

The following sections contain a few useful tips for quicker, easier, and more error-free
assembly code writing.

5.1.1 Using the One-Line Assembler

The DSP56300 instruction set is highly orthogonal (i.e., address mode choices and
register choices apply equally to many different instructions). However, the number of
registers, the parallel move architecture, and the multiple instruction classes can
sometimes make the selection of operands and modes time consuming and tedious. A
very convenient way to check a line of assembly code for legal address modes, register
choices, and syntax is to use the one-line assembler built into the Simulator.

For example, suppose the user needs an instruction with a parallel X memory and
register data move (a “move X:R:” instruction), such as “move x:(r0)+,x0 a,y0”. From the
Simulator, the user would enter the commands shown below. User entries are in bold;
note that the instruction, space, and semicolon are inserted before the existing “nop”.

However, if the y register is used instead of y0, the resultant instruction is illegal:

Example 5-1 Simulator Confirmation of Legal Instruction

MOTOROLA DSP56300 SIMULATOR: VERSION 6.0.33 06-26-96
asm p:0
p:$000000 000000 = nop
Change: move x:(r0)+,x0 a,y0 ; nop press {Return} - the one-line assembler

 advances to the next instruction
p:$000001 000000 = nop press {up-arrow} to see if the

 instruction was entered as desired
p:$000000 109800 = move x:(r0)+,x0 a,y0

Example 5-2 Simulator Alert of Illegal Register

Change: move x:(r0)+,x0 a,y ; nop
Invalid register specified
MOTOROLA DSP56300 Assembly Code Development 5-3

Helpful Coding and Debugging Tips

Assembly Coding
As another example, consider the following illegal “movep” instruction:

Changing the X memory address to a valid I/O short location (e.g., $fffffe) will result in
a legal instruction and no error message from the Simulator.

5.1.2 Using the Help Command for Registers

Another very useful trick involves the use of the Simulator or debugger “help
register_name” feature to create a miniature “programming sheet”.

As an example, suppose the Address Attribute Register 0 (AAR0) needs to be
programmed. The user can perform the following actions from the Simulator:

Example 5-3 Simulator Alert of Illegal Addressing

Change: movep x:$1000,p:$2000 ; nop
I/O short addressing must be used for source operand

Example 5-4 Simulator Generation of Register Template

MOTOROLA DSP56300 SIMULATOR: VERSION 6.0.33 06-26-96

log s progsheet
Output log file:./progsheet.log

help aar0
Read-Write core register. X:fffff9
Port A Address Attribute Register
 B B
 A A B
 C C A A A A A A A A A A N N N N P B Y X P A A A
 1 1 C C C C C C C C C C C C C C A A E E E A T T
 1 0 9 8 7 6 5 4 3 2 1 0 3 2 1 0 C M N N N P 1 0
--------.-------.-------.-------.-------.-------
 0 < Bit States
--------.-------.-------.-------.-------.-------
 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 < Bit Number
 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

log off
5-4 DSP56300 Assembly Code Development MOTOROLA

Helpful Coding and Debugging Tips

Assembly Coding
This results in the file progsheet.log containing the following:

The curly braces can be removed by using a text editor to search for all occurrences of ‘{‘
or ‘}’ and to replace each occurrence with a null string. This realigns the bit names with
the bit values. A shortcut method that avoids the curly braces altogether is to merely
select and copy the output from the Simulator window and paste it into a text editor
window.

The same technique may also be used for the documentation of actual register values.
For example, to enable communication with the entire 32 Kword SRAM bank on the
DSP56301ADM, using either X or Y accesses to locations $8000 through $8fff, one could
create the Simulator output shown in the following example:

Example 5-5 Register Template Saved in File

help aar0
Read-Write core register. X:fffff9
Port A Address Attribute Register
 {B B}
 {A A B}
 {C C A A A A A A A A A A N N N N P B Y X P A A A}
 {1 1 C C C C C C C C C C C C C C A A E E E A T T}
 {1 0 9 8 7 6 5 4 3 2 1 0 3 2 1 0 C M N N N P 1 0}
--------.-------.-------.-------.-------.-------
 0 < Bit States
--------.-------.-------.-------.-------.-------
 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 < Bit Number
 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
log off
MOTOROLA DSP56300 Assembly Code Development 5-5

Helpful Coding and Debugging Tips

Assembly Coding
A suitable portion of the output may then be pasted into the assembly code and
commented out as follows:

Notes: 1. The demarcations of the nibble boundaries were manually added to the
above examples for illustrative purposes. This may be included as a
feature in later versions of the tools.

 2. The debugger must be used to generate the displays of OnCE or PLL
registers.

Example 5-6 Simulator Output of Register Values

MOTOROLA DSP56300 SIMULATOR: VERSION 6.0.33 06-26-96

radix h

change aar0 8931

help aar0
Read-Write core register. X:fffff9
Port A Address Attribute Register
 B B
 A A B
 C C A A A A A A A A A A N N N N P B Y X P A A A
 1 1 C C C C C C C C C C C C C C A A E E E A T T
 1 0 9 8 7 6 5 4 3 2 1 0 3 2 1 0 C M N N N P 1 0
--------.-------.-------.-------.-------.-------
 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 < Bit States
--------.-------.-------.-------.-------.-------
 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 < Bit Number
 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Example 5-7 Register Display Used in Code Comments

;B B
;A A B
;C C A A A A A A A A A A N N N N P B Y X P A A A
;1 1 C C C C C C C C C C C C C C A A E E E A T T
;1 0 9 8 7 6 5 4 3 2 1 0 3 2 1 0 C M N N N P 1 0
;-------.-------.-------.-------.-------.-------
;0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1
;-------.-------.-------.-------.-------.-------

move #$8931,aar0
5-6 DSP56300 Assembly Code Development MOTOROLA

Helpful Coding and Debugging Tips

Debugging
5.2 DEBUGGING

A simple way to speed up the debugging process is to use command files. A common
example of this would be the use of the following pair of files to modify the Status
Register (SR):

The user need only type “mask {Return}” and “unmask {Return}” from the debugger
command line. The comments in the command file are displayed during the execution of
the file; in some cases this can be an aid in keeping track of what various command files
are doing.

Command files can also be nested. For example, the command file app1.cmd could be
used to load and run the program app1.cld on the DSP56301ADM. The pc.cmd part of this
program might be run by itself in order to reinitialize the Program Counter when one
wanted to restart the program but did not need to reset anything or reload the program.

Another easily overlooked but useful feature is the use of the radix and display
commands in conjunction. Besides changing the default radix for command line entry,
radix can be used to specify the display format (decimal, hexadecimal, etc.) for any
register or memory location (both of which can be enabled for automatic display with
the display command). This functionality also applies to the Simulator.

Example 5-8 Simple Command File Pair

mask.cmd:
c sr sr|$300 ; disable all maskable interrupts

unmask.cmd:
c sr sr&$fffcff ; enable all levels of interrupts

Example 5-9 Nested Command Files

app1.cmd:
f s reset the command converter and DSP
l app1 load app1.cld
pc initialize the program counter
g begin execution

pc.cmd:
c pc 0
MOTOROLA DSP56300 Assembly Code Development 5-7

Helpful Coding and Debugging Tips

Debugging
5-8 DSP56300 Assembly Code Development MOTOROLA

	DSP56300 Assembly Code Development Using the Motor...
	1 Introduction
	1.1 Introduction
	1.2 Terms and Definitions
	1.3 Scope

	2 Software Development Flow
	2.1 Software Development Flow
	2.1.1 The “make” Function
	2.1.2 Filename Conventions
	2.1.3 Target Boards

	2.2 Shared Toolset Resources

	3 Software Build Process
	3.1 Introduction
	3.2 Project makefile
	3.2.1 UNIX Example
	3.2.2 Porting from UNIX to DOS

	3.3 Assembly Code Files
	3.4 Linker Files
	3.5 Listing Files
	3.6 Executable File

	4 Usage of Simulator versus Debugger
	4.1 Overview
	4.2 Relative Advantages
	4.3 User Command Differences

	5 Helpful Coding and Debugging Tips
	5.1 Assembly Coding
	5.1.1 Using the One-Line Assembler
	5.1.2 Using the Help Command for Registers

	5.2 Debugging

