
DSP56300 Programming Exercises
Wireless Engineering Bulletin:

INTRODUCTION TO THE DSP56300

An Approach in 8 Exercises

Embedded Systems Group,
Motorola Semiconductor Products Sector,
East Kilbride, Scotland, U.K.

Version Comments Release date

0.1 Draft Review Copy 1st August 1996

Motorola reserves the right to make changes without further notice to any product herein to improve reliability, function,
or design. Motorola does not assume any liability arising out of the application or use of any product, circuit, or software
described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are
not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or
other applications intended to support life, or for any other application in which the failure of the Motorola product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
intended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,
even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the
Motorola logo* are registered trademarks of Motorola.

*
18/11/97
© MOTOROLA LTD., 1996. All trademarks are recognised.

MOTOROLA

DSP56300 Programming Exercises

ises as
ectory
files for

d that
 to this

ing

e. The
 imple-

should
se are
INTRODUCTION TO THE DSP56300

An Approach in 8 Exercises

1. Purpose of the Exercises
The aim of these exercises is to provide a quick and easy hands on introduction to the
DSP56300 family of processors and the corresponding development tools. The exercises were
designed for both engineers who are familiar with other DSPs but are new to the Motorola
architecture and tools, and those who are using DSPs for the first time.

In these exercises the assembler and linker will be used to
• generate executable files from assembler code
• check the listings for correct assembly syntax
• check the memory allocation and form the memory space.

In addition the DSP simulator will be used to
• verify the correct operation of software
• debug code reliably by running or stepping through
• log and restore I/O data
• count cycles to measure the performance.

The exercise code consists of all the assembly and control files you need for the exerc
well as a set of step-by-step instructions detailing how to run the exercises. The dir
structure of this code should be preserved as each directory (ex1..ex8) contains all the
a different exercise.

The Exercise Code. Each exercise directory consists of :
exx_main.asm - the main assembler file
exx_func.asm. - subroutines are provided (optionally)
exx.ctl - defines the memory mapping (linker memory control file)
exx.txt - a textfile comprising all the instructions for the test run

(can also be found in documentation)

The first five sections of this document apply to all of the exercises and it is recommende
you read these sections before starting to work on the exercises themselves. In addition
there is a section dedicated to each individual exercise.

The Exercise Documentation. Each exercise documentation section has the follow
general structure:

Introduction
Technical Considerations
Implementation Description
Test Run

The introduction contains a list of the features and topics that are covered in the exercis
technical considerations section discusses DSP issues and background information. The
mentation description reports why the program structure was chosen and what you
know about the assembler implementation. Finally, the instructions to run the exerci
18/11/97
Page 2

MOTOROLA

DSP56300 Programming Exercises

od
ith the
ned in

d the
s in

mple
o get
er in a
s are

the
cursive
ure.

e
cation
ardware

 of
w lines

lysis
wer.

d look

cises.
rgani-
provided in the test run section.

Although the test run section contains full instructions on how to work through each exercise,
it is suggested that after each test run, engineers will experiment further by changing the code
to using additional features of the development tools.

List of Exercises

Exercise 1: Calculate a Sum of Products. This small piece of code shall serve mainly to
inspect and understand the general file format of the assembler files, get started with the
assembler and linker tools, and to start working with the simulator.
In order to demonstrate the Arithmetic Logic Unit (ALU) and the general concept of operation
we will use the ‘mac’ instruction in a hardware do-loop. This is the basic form for digital
filtering.

Exercise 2: Addressing Modes. Effective addressing of data is essential for go
performance of any algorithm. All possible modes of data addressing are shown here w
use of simple examples. The principles of the Address Generation Unit (AGU) are explai
the documentation.

Exercise 3: Division. A binary fractional division of two numbers is performed in this
exercise. The ‘div’ instruction is used here to get a quotient with full 24 bit resolution, an
user can verify the result with respect to fractional number representation. Further action
the simulation environment are shown.

Exercise 4: FIR Filtering. One of the most common applications is taken here as an exa
to show how the optimized MAC instruction works, combined with parallel data moves, t
a minimum of instruction cycles per sample. In this exercise the user can run an FIR filt
subroutine. This is tested using real environment simulation, i.e. multiple data value
accessed from a source external to the DSP.

Exercise 5: Root calculation. This exercise uses another common application to clarify
fractional data format in another context. The approach taken here is based on a re
estimation technique producing full 24 bit resolution obtained from a 48 bit long input fig
The algorithm can be tested with different sets of input data.

Exercise 6: Matrix multiplication. The multiplication of 2 matrices is modelled for th
demonstration of nested loops. Optimization of loop overheads is shown with this appli
and the hardware stack operation may also be analysed here in the context of the h
loops.

Exercise 7: Selected Instruction Examples. This short exercise demonstrates a number
instructions which have special features and formats. These instructions are used in a fe
of code to show the instruction format and operation.

Exercise 8: Power Analysis. The last exercise tries to demonstrate a simple signal ana
task, i.e. the calculation of a sliding power window in a signal finding the maximum po
When the maximum is found, the signal power is evaluated with the help of a threshol
up table.

The following sections contain general information that is to be applied to all the exer
The way from a text file (assembler) to the executable is explained as well as memory o
sation and some general hints to avoid the most common errors.
18/11/97
Page 3

MOTOROLA

DSP56300 Programming Exercises

check
heck,

 get a
Refer-
names
atable
2. How to get an executable file from assembler code:
Having written assembler code that is stored in a source file (*.asm), the assembly tool
(asm56300) is called to check the syntax of the source code, translate and process the
assembler directives and macros, and to generate a file that is generally referred to as the object
file.

Figure 1: File Generation

This object file contains the syntax checked mnemonics, relatively addressed references and it
often contains unresolved symbols, since several of these object files may be part of one
loadable file. However, Figure 1 shows the example using only a single file.

Using the assembler it is possible to generate the ‘listing file’ which makes it possible to
all the actions which occurred during assembly time. The listing file is only a means to c
it is not used as input for further processing (see Figure 1).
The linker is called to link all the assembled files together. This happens in order to
software image that is mapped onto the destination’s memory size and configuration.
ences to external sources (different files) are resolved at this point by replacing global
with real values or addresses. (If the linker is called with the option to produce a reloc

Source Code

Assembled

Option:

asm56300

dsplnk

Assembler
Listing
(*.lst)

Memory Map
File (*.map)Linked Absolute

dsplnk

Object
 Code (*.cln)

Object Code (*.cld)

Motorola Tools

Files

Relocatable

Object Code

Option: Linked

Memory
Configuration

File (*.ctl)

(*.asm)

C Code (*.c)

GUI
Simulator/Emulator
18/11/97
Page 4

MOTOROLA

DSP56300 Programming Exercises
output file, this file is generated now.)

The normal case is that the linker now takes the memory configuration file to convert all the
symbols into absolute addresses and thus producing a file format (COFF, common object file
format), that is directly loadable into the simulation/emulation platform.

3. The DSP56300 Memory Map
The memory of the DSP56300 is organised into three different areas: the p: memory where all
the program code and the interrupt vectors are located, and two areas for data storage, x: and y:
memory (see Figure 2).

Figure 2: DSP56300 Memory Organisation

Since each of these areas are connected to a dedicated bus, the DSP is able to process most of
the operations in a single clock cycle. However, this requires that the data is located correctly
and sensible memory allocation is essential for fast running algorithms. For instance, if one has
two streams of input data to be combined during processing these streams should obviously not
be located in the same data memory area.

4. Recommended Reading
If you have never written assembler code before it is recommended that you read the following
paragraphs before starting with the exercises.

DSP Development Software, Assembler Reference Manual [3], Chapter 2, describes briefly
the format of the assembler files, i.e. the use of the instructions, directives and other conven-
tions.
DSP56300 Family Manual [1], Page 1-3, shows the core architecture. Here you can get an idea
of the functional blocks of the 56300 core and the general bus structure of the chip.

If you want to go even one step further, you can take a look at the schematics of the ALU (Page
3-3), AGU (Page 4-1) and read the section dealing with the data representation.

5 References
The following documents ([1], [2], [3]) should be available when going through the exercises,
in addition, [4] and [5] may be useful.

p: x: y:

DataDataProgram
18/11/97
Page 5

MOTOROLA

DSP56300 Programming Exercises
[1] DSP 56300 Family Manual, DSP56300FM/AD covering the following topics
• Detailed description of the core, DMA, cache
• PLL, OnCE
• Instruction set
• Benchmarks.

[2] DSP 56301 User’s Manual, DSP56301UM/AD containing
• Chip description
• Pins, memory, I/O
• Host interface
• Timer, ESSI
• SCI
• Bootstrap program
• Interrupt equates .

[3] DSP Development Software Manual covering the software topics such as
• Simulator reference
• C library functions
• GUI (graphical user interface)
• Assembler and COFF file
• Linker and librarian reference
• Instruction set
• Additional readings are mentioned in the Exx.txt files.

[4] Fractional and Integer Arithmetic using the DSP56000 Family of General-Purpose
DSPs, which explains

• Data Representations
• Addition and Subtraction
• Multiplication and Division

[5] Real Time Digital Signal Processing Applications with Motorola’s DSP56000
Family with the following topics

• FIR, IIR, FFT, ..

If you have further questions, please contact your local MOTOROLA distribution
centre.

MOTOROLA
Semiconductor Products Sector

Embedded Systems Group
East Kilbride

Glasgow G75 OTG
Scotland, U.K.
18/11/97
Page 6

MOTOROLA

DSP56300 Programming Exercises

wn
y0, y1
is, two
n can

ion.
EXERCISE 1 - CALCULATE A SUM OF PRODUCTS

Introduction
This first exercise is intended to show the first steps on the way to successful assembler code
development. If you have experience in writing assembler code and running it on a devel-
opment system you should go through this quickly or even skip this exercise completely.

After having done this exercise you should

• Define the location of code and data in DSP memory
• Load a program into the simulator
• Step through, debug, and set breakpoints
• Use the MAC instruction in a loop
• Perform and interpret a fractional multiplication

Technical Considerations

Performing Operations in the 56300. The general principle of data processing is sho
below in Figure 3. Most of the instructions use either one or two of the registers x0, x1,
as an input and the result is stored in one of the accumulators a or b. In addition to th
moves may be done in parallel to most of the ALU operations where a move operatio
comprise data transport between a x/y register and a location in memory in either direct

Figure 3: DSP56300 ALU Core and Data Transfer

A2 A1

A

Data ALU Input Registers

Data ALU Accumulator Registers

A0

X1

X

X0

055

02302307

B2 B1

B

B0
055

02302307

023023

047
Y1

Y

Y0

023023

047

X: Y:
18/11/97
Page 7

MOTOROLA

DSP56300 Programming Exercises

asm,

erving
ors a
). The
e data
nd b)
_LEN

s. The
e any
This architecture provides the means to do most of the signal processing operations in a single
cycle per input data value. The related address register updates (not shown in Figure 3) are
described in exercise 2 (Addressing Modes).
Some rules due to hardware design impacts have to be followed: The two parallel moves
cannot use the same bus (refer to core architecture, [1], p.1-3) because the moves are done in
the same clock cycle. They should not have two of the same register types (x or y) as a desti-
nation.

Program Control Unit (PCU). The program control unit features Loop Address (LA) and
Loop Count (LC) registers dedicated to supporting the hardware DO loop instruction in
addition to the standard program flow-control resources, such as a Program Counter (PC),
Status Register (SR), and System Stack (SS). All registers are read/write to facilitate system
debugging. The diagram below illustrates the PCU programming model with the registers and
the SS. For more details please refer to Section 6 in [1].

Figure 4: PCU Structure

Implementation Description
The implementation of this small program is performed in two parts that are both to be found
in the same file: The data declaration and the program code section. In addition to this, a linker
configuration file is provided and a text file where the running instructions shown below can
be found as well. Thus, you have three files in your directory ‘/tutorial/ex1’: ex1_main.
ex1.ctl, and ex1.txt.

In the file ex1.asm, the data declaration with the ‘ds’ (define storage) directive is just res
memory without initialisation. Within the first lines of the program section the accumulat
and b are cleared. (A professional program would probably need a lot more initialisation.
first action of the program is to initialize the address registers with the start address of th
buffers. The buffers in x: and y: are then initialised with increasing and decreasing (a a
numbers, respectively. This happens in a hardware do-loop being executed SINGLE
times ($40). Thus, we get two memory areas of length $40 words with known content
memory locations start at $100, this is done to show locating arrays in memory (it could b
address!).

S
P

[3:0]23 6 5 4 3 0

23 0

Program Counter
(PC)

48 SSH 2423 SSL 0

0

Status Register (SR)

Loop Address Register
(LA)

Loop Counter (LC)

Stack Pointer (SP)

15
23 0

Stack Size (SZ)

23 0

23 0

23 1615 8 7 0

System Stack (SS)

EMR MR CCR

Operating Mode Register
(OMR)

23 1615 8 7 0

SCS EOM COM

23 8 7 0

Vector Base Address
(VBA)

*

Stack Counter (SC)

4 0

* read as zero, should be written
with zero for future compatibility
18/11/97
Page 8

MOTOROLA

DSP56300 Programming Exercises
When the memory initialisation is finished, the registers are initialised again to the start of the
buffers in order to perform the mac-loop now. In the loop the overall sum of the $40 products
is accumulated in a.
18/11/97
Page 9

MOTOROLA

DSP56300 Programming Exercises
Test Run

1. Open the file ex1_main.asm and take a look at the code and the comments,
respectively.

2. In the code, the memory initialisation is performed twice. This is done to
demonstrate a major issue for an optimized single cycle DSP:

Programming with respect to the instruction pipeline.

Now, open a shell (dos/unix) and invoke the assembler, make sure that you
are in the correct directory (tutorial/ex1).
’asm56300 -l -bex1_main.cln ex1_main.asm’

The assembler will issue two warnings: ’Pipeline stall reading register written
in previous instruction’ means that you are trying to access data that is still
being processed in the ALU:
a is written in execute stage of pipeline (last stage):

inc a ; increment a
;a is read in an earlier stage: CONFLICT

move a0,x:(r0)+ ; write a0 to memory

This fact will be detected by the DSP hardware during runtime and a no-op
will be automatically inserted to avoid an access to the register that is not
updated yet (thus containing wrong data). The assembler checks this in
advance and reminds you to write your code accordingly. If you do not mind
a wait cycle, you may ignore these warnings. But the second initialisation
procedure shows an example how to avoid the so called pipeline conflicts:
read the result a of the last loop cycle first
move a0,x:(r0)+ ; write a0 then calculate the new one.
inc a ; increment a

In almost all of the applications it is possible to organise the code such that no
pipeline latency slows the code execution down.

NOTE: FURTHER READING The pipeline operation is described starting at page 7-
1 in the Family Manual [1]. Please read paragraph 7.1.1 carefully to under-
stand how the pipeline works. You may also refer to Appendix B in [1] for
detailed information on certain instructions and to page 3-3 for the architec-
ture of the data ALU. And finally you should read pages 3-20 through 3-22 to
get an overview of the impacts on programming.
18/11/97
Page 10

MOTOROLA

DSP56300 Programming Exercises
3. Now call the linker:
’dsplnk -mex1.map -rex1.ctl -bex1.cld ex1_main.cln’

This means, that the loadable file ’ex1.cld’ is filled with the relocatable code
in ex1_main.cln and all the addressing is made absolute using the memory
configuration file ’ex1.ctl’. You can open this file to see where your code and
data will be located in DSP memory during runtime. To verify this you can
check the map file ’ex1.map’ where all the symbols and sections are listed
with their addresses.

4. Call the simulator now, look for the directory
/tutorial/ex1

and load ’ex1.cld’.
(MENU: File,Load, Memory COFF)

NOTE Loading a file brings the simulator into a state where you can start from. No
explicit reset is required on top of this. The entry point (First instruction after
reset) is defined in ’ex1.ctl’.

5. Open an assembly window (MENU: Windows,Assembly). Open two mem-
ory windows: (MENU: Windows, Memory then select x mem space, then do
same with y space). Open a command window (MENU: Windows, Com-
mand) and a register window (MENU: Windows, Register). And finally
open a watch window (MENU: Windows, Watch, then enter ’cyc’ for cycles).

6. Do a few steps (step button), and check in the register window, if r0 and r1
are initialised correctly.

7. Now set a breakpoint to the symbol ’init_2’: either (MENU: Execute,Break-
points,Set and enter ’end_init’ to the field ’start address’) or just double click
the address of the program line in the assembly window. Run the program by
clicking on the green light. Check the written memory ranges in x: $100..$13f
and y: $100..$13f. Both of them should contain in/decreasing numbers now.
Data is correct in memory now and the cycle counter should show $191 =
401. This is:

6 cycles for pipeline init
6 cycles for the first four instructions
5 cycles for the ’do’
6 x 64 cycles for the loop

8. Now set a breakpoint to the symbol ’end_init’, reset the cycle counter (enter:
’change cyc 0’) and run the program again. Between break points the DSP did
almost the same job this time and the cycle counter shows that you have
saved 134 cycles now in comparison to the other solution (cyc should be
$10b = 267 now).
18/11/97
Page 11

MOTOROLA

DSP56300 Programming Exercises
9. Let the program now run until the end by setting another breakpoint to
’end_mac’ and running the simulator again. Please check the accumulator a
(a0, lower 24 bits of a) now for the result (register window), it should contain
$fd6540.

10. Well done. If you were wondering why ($000001 * $ffffff) has the result
$fffffe -> (1*(-1))=-2 (this was the result of the second loop run), please refer
to the explanations of the fractional format of number representations in exer-
cise 3.
18/11/97
Page 12

MOTOROLA

DSP56300 Programming Exercises

hms,
r FFT
 logic
gisters
4-bits
ompu-
k cycle.

ht
ointers.
EXERCISE 2 - ADDRESSING MODES

Introduction
This exercise describes the function of the Address Generation Unit (AGU) and its main
objective is to illustrate:

• The DSP56300 Special Addressing Modes
• The Address Register Indirect operation
• The function of the Modifier Registers
• Modulo and Reverse Carry Addressing techniques

Technical Considerations

AGU Architecture. The AGU provides all the addressing modes required by DSP algorit
such as modulo addressing for circular buffer generation and bit-reverse arithmetic fo
butterflies. The AGU is divided into two halves, each of which has an address arithmetic
unit (ALU) and three sets of registers. There are a total of eight independent pointer re
(R), eight offset registers (N) and eight modifier registers (M). All addresses are 2
supporting 16-Mwords in each memory space. Two address arithmetic units permit c
tation and generation of two 24-bit data addresses for dual operand access in every cloc

Figure 5: AGU Architecture

For more details please refer to [1], section 4.

The AGU Programming Model. The programmer’s view of the AGU is three sets of eig
registers, which can be used as temporary data registers and indirect memory p
Automatic updating is available when using address register indirect addressing.

GLOBAL DATA BUS

N0

N1

N2

N3 M3

M2

M1

M0

ADDRESS
ALU

ADDRESS
ALU

R0

R1

R2

R3 R7

R6

R5

R4 M4

M5

M6

M7 N7

N6

N5

N4

TRIPLE MULTIPLEXER

FIRST ADDRESS ALU SECOND ADDRESS ALU

XAB YAB PAB

PROGRAM ADDRESS BUS

EP
18/11/97
Page 13

MOTOROLA

DSP56300 Programming Exercises
Figure 6: Address Registers

Each address register Rn has an associated offset register Nn and an associated modifier
register Mn. The Rn registers are used as address pointers to locate data operands in memory,
and can be programmed for linear addressing, modulo addressing (regular or multiple wrap-
around), and bit-reverse addressing. The Nn registers are used to provide an offset value for
offset updating of the address registers. The Mn registers select the type of address arithmetic
to be performed when an address register is updated. The EP register (when enabled) is used to
point to the stack extension in data memory and is referenced implicitly by instructions such as
DO, JSR, RTI, etc. or directly by the MOVEC instruction. For a more detailed description on
how to use the stack extension mode of operation, please refer to Section 6.3.5 in [1].

Address Modifier Types. As previously mentioned, the address modifier (Mn) defines the
type of address arithmetic to be performed, and allows the user to create various data structures
in memory, such as FIFOs, delay lines, circular buffers, stacks, and bit-reversed FFT buffers
etc. The table below shows how the contents of the modifier register (Mn) select the type of
address arithmetic to be performed. For more details please refer to [1], Section 4.

The addressing modes specify whether the operands are in registers and/or memory locations,
and provide the specific address of the operands. The DSP56300 core provides four different
addressing modes: register direct, address register indirect, special and PC relative.

Modifier Mn Address Calculation Arithmetic

XX0000 Reverse-Carry (Bit-Reverse)

XX0001 Modulo 2

XX0002 Modulo 3

: :

XX7FFE Modulo 32767 (215-1)

XX7FFF Modulo 32768 (215)

XX8001 Multiple Wrap-Around Modulo 2

XX8003 Multiple Wrap-Around Modulo 4

XX8007 Multiple Wrap-Around Modulo 8

: :

XX9FFF Multiple Wrap-Around Modulo 213

XXBFFF Multiple Wrap-Around Modulo 214

XXFFFF Linear (Modulo 224)

Notes: XX means don’t care

All other combinations are reserved

Offset Registers

M7
M6
M5
M4
M3
M2
M1
M0

23 0
N7
N6
N5
N4
N3
N2
N1
N0

23 0
R7
R6
R5
R4
R3
R2
R1
R0
EP

23 0

Address Registers
Modifier Registers

Upper File

Lower File

High Group

Lower Group
18/11/97
Page 14

MOTOROLA

DSP56300 Programming Exercises
The following sections attempt to illustrate the various addressing modes, it is recommended
that the ex7_main.asm is made available as you read this document as the code will illustrate
the examples discussed.

Register Direct Mode. This mode specifies that the operand is in one or more of the 10 data
ALU registers (A2,A1,A0,B2,B1,B0,X1,X0,Y1,Y0), 24 address registers (R0-R7,N0-N7,M0-
M7) or 7 control registers (OMR,SR,PC,VBA,LA,LC,SP).

Example: Move the contents of the 24-bit X0 data input register to the 24-bit A1 accumulator
register.

Figure 7: move x0,a1

Address Register Indirect Modes. These addressing modes specify an address register (Rn)
to point to an operand stored in memory. They can also specify an address calculation to be
performed either pre or post instruction execution. Each address register Rn is associated with
an offset register Nn and a modifier register Mn. The Nn register contains an offset value
which can be added to Rn to update its contents. The Mn register specifies the type of address
arithmetic to be performed when Rn is updated. Mn is set to $FFFFFF upon reset to specify
linear address arithmetic.

No Update (Rn) - Example: Transfer the contents of accumulator register A1 to the X-
Memory location pointed to by address register R0.

Figure 8: move a1,x:(r0)

Postincrement by one (Rn)+ - Example: Transfer the contents of accumulator register B0 to
the Y-Memory location pointed to by address register R1. Once the transfer is complete, R1 is
incremented by one.

X X X X X X X X

A2 A1 A0
X X X X X X

BEFORE EXECUTION AFTER EXECUTION

X X X X X X X X 8 7 6 5 4 3

A2 A1 A0

X X X X X X

X1 X0
8 7 6 5 4 38 7 6 5 4 3 X X X X X X

X1 X0

:
:

1 2 3 4 5 6
:
:

23 0
:
:

X X X X X X
:
:

23 0

X X 1 2 3 4 5 6 X X X X X X

A2 A1 A0

X: Memory X: Memory

$1000$1000

0 0 1 0 0 0

X X X X X X

F F F F F F

R0

N0

M0

0 0 1 0 0 0

X X X X X X

F F F F F F

R0

N0

M0

BEFORE EXECUTION AFTER EXECUTION

X X 1 2 3 4 5 6 X X X X X X

A2 A1 A0
18/11/97
Page 15

MOTOROLA

DSP56300 Programming Exercises
Figure 9: move b0,y:(r1)+

Postdecrement by one (Rn)- - Example. Transfer the contents of data register Y0 to the Y-
Memory location pointed to by address register R2. Once the transfer is complete, R2 is decre-
mented by one.

Figure 10: move y0,y:(r2)-

Predecrement by one -(Rn) - Example. Predecrement address register R3 by one and
transfer the X-Memory location pointed to by the decremented address register R3 to accumu-
lator register B

Figure 11: move x:-(r3),b

Postincrement by Offset (Rn)+Nn - Example . Transfer the contents of data input register
X1 to the X-Memory location pointed to by address register R4. Once the transfer is complete,
R4 is updated by adding the offset contained in offset register N4 to the contents of R4.

:
X X X X X X
6 5 4 3 2 1

:

23 0
:
:

X X X X X X
:

23 0

X X X X X X X X 6 5 4 3 2 1

B2 B1 B0

Y: Memory Y: Memory

$2000$2000

0 0 2 0 0 1

X X X X X X

F F F F F F

R1

N1

M1

0 0 2 0 0 0

X X X X X X

F F F F F F

R1

N1

M1

BEFORE EXECUTION AFTER EXECUTION

X X X X X X X X 6 5 4 3 2 1

B2 B1 B0

$2001

:
F E D C B A
X X X X X X

:

23 0
:

X X X X X X
:
:

23 0

X X X X X X F E D C B A

Y1 Y0

Y: Memory Y: Memory

$3000$3000

0 0 2 F F F

X X X X X X

F F F F F F

R2

N2

M2

0 0 3 0 0 0

X X X X X X

F F F F F F

R2

N2

M2

BEFORE EXECUTION AFTER EXECUTION

X X X X X X F E D C B A

Y1 Y0

$2FFF

:
X X X X X X
1 2 1 2 1 2

:

23 0
:

X X X X X X
1 2 1 2 1 2

:

23 0

X X X X X X X X X X X X X X

B2 B1 B0

X: Memory X: Memory

$4000$4000

0 0 3 F F F

X X X X X X

F F F F F F

R3

N3

M3

0 0 4 0 0 0

X X X X X X

F F F F F F

R3

N3

M3

BEFORE EXECUTION AFTER EXECUTION

0 0 1 2 1 2 1 2 0 0 0 0 0 0

B2 B1 B0

$3FFF
18/11/97
Page 16

MOTOROLA

DSP56300 Programming Exercises
Figure 12: move x1,x:(r4)+n4

Postdecrement by Offset (Rn)-Nn - Example. Transfer the contents of the X-Memory
location pointed to by address register R5 to accumulator A0. Once the transfer is complete,
R5 is updated by subtracting the offset contained in offset register N5 from the contents of R5.

Figure 13: move x:(r5)-n5,a0

Indexed by Offset (Rn+Nn) - Example. Transfer the contents of data input register Y0 to the
X-Memory location pointed to by the summation of the contents of the address register R6 and
the offset register N6. Note that address register R6 is not updated.

Figure 14: move y0,x:(r6+n6)

X X X X X
:
:
:

9 8 7 6 5 4

23 0
:
:
:
:

X X X X X

23 0

9 8 7 6 5 4 X X X X X X

X1 X0

X: Memory X: Memory

$5004

$5000

0 0 5 0 0 4

0 0 0 0 0 4

F F F F F F

R4

N4

M4

0 0 5 0 0 0

0 0 0 0 0 4

F F F F F F

R4

N4

M4

BEFORE EXECUTION AFTER EXECUTION

9 8 7 6 5 4 X X X X X X

X1 X0

$5000

4 5 6 7 8 9
:
:
:
:

X X X X X X

23 0
4 5 6 7 8 9

:
:
:
:
:

23 0

X X X X X X X X X X X X X X

A2 A1 A0

X: Memory X: Memory

$6000$6000

0 0 5 F F B

0 0 0 0 0 5

F F F F F F

R5

N5

M5

0 0 6 0 0 0

0 0 0 0 0 5

F F F F F F

R5

N5

M5

BEFORE EXECUTION AFTER EXECUTION

0 0 0 0 0 0 0 0 4 5 6 7 8 9

A2 A1 A0

$5FFB

:
A B C D E F

:
:

X X X X X X
:

23 0
:

X X X X X X
:
:

X X X X X X
:

23 0

X X X X X X A B C D E F

Y1 Y0

Y: Memory Y: Memory

$7003

0 0 7 0 0 0

0 0 0 0 0 3

F F F F F F

R6

N6

M6

0 0 7 0 0 0

0 0 0 0 0 3

F F F F F F

R6

N6

M6

BEFORE EXECUTION AFTER EXECUTION

X X X X X X A B C D E F

Y1 Y0

$7000

$7003

$7000

+

18/11/97
Page 17

MOTOROLA

DSP56300 Programming Exercises

dress
e least
ctively.
Modifier Register Usage. The eight 24-bit modifier registers (M0-M7) specify the type of
address arithmetic to be performed for addressing mode calculations, or can be used for
general-purpose storage. The address ALU supports linear, modulo and reverse-carry arith-
metic for all address register indirect modes.

Modulo Addressing (Mn = Modulus-1). For modulo arithmetic, the contents of Mn specifies
the modulus i.e. circular buffer/table size. The following diagram illustrates the procedure
taken for modulo register set-up, for a buffer/table size of 20 elements and an increment offset
(Nn) of 3.

Figure 15: Modulo Adressing

Reverse-Carry Addressing (Mn = $000000). Reverse carry is selected by setting the
modifier register to zero. The address modification is performed in hardware by propagating
the carry in the reverse direction i.e. from the MSB to the LSB. Reverse carry is equivalent to
bit reversing the contents of Rn (i.e. redefining the MSB as the LSB, the next MSB as bit 1,
etc.) and the offset value, Nn, adding normally, and then bit reversing the result. If the + Nn

addressing mode is used with this address modifier and Nn contains the value 2(k–1) (a power
of two), this addressing modifier is equivalent to bit reversing the k LSBs of Rn, incrementing
Rn by 1, and bit reversing the k LSBs of Rn again.

To illustrate the address reordering technique, consider each element of the input sequence
labelled ‘orgdatar’ in the file ‘ex2_main.asm’ and its associated binary base ad
$40=1000000. For an 8-point (eight-element) input data sequence (i.e. orgdatar) the thre
significant bits (LSB) of the associated binary addresses are 000,001,002,...,111 respe

To reorder the addresses of the data input sequence, the m LSBs (2(k–1) = 3) of the address of
each sequence element must be ‘Bit-Reversed’ as shown below:

X or Y: Memory

$32

0 0 0 0 2 9

0 0 0 0 0 3

0 0 0 0 1 3

R0

N0

M0

$2f

$2C

$29

$22

Increment
in Register

N0 = 3

Modulus
in Register
M0 = 19

Upper bound (End of table)
Let J = 5, M = 20

2J+ M-1 → 32 + 20 -1 = 51
UB Address 51 d = $000033

Lower bound (Begining of table)
Let J = 5, M = 20

2J ≥ Μ → 25 ≥ 20
LB Address 32 d = $000020

Modulo Register Setup:

1. MODULUS = M
Modifier register Mn = M-1

2. Beginning of Table

Lower bound = 2J ≥ M

3. End of Table

Upper bound = 2J + M - 1

4. Starting point within Table
Lower bound ≤ Address register Rn
≤ Upper bound

5. Desired Increment (if any)
Offset register Nn = Increment ≤ M

Starting Address

Increment

Modulo M = 20
18/11/97
Page 18

MOTOROLA

DSP56300 Programming Exercises
Figure 16: Bit-Reverse Addressing

This address modification is useful for addressing the twiddle factors in 2k-point FFT

addressing and to unscramble 2k-point FFT data. The range of values for Nn is 0 to + 8M i.e.

Nn=223, which allows bit-reverse addressing for FFTs up to 16,777,216 points.

Special Addressing Modes. They do not use an address register in specifying an effective
address. These modes specify the operand or the address of the operand in a field of the
instruction or they implicitly reference the operand.

Immediate Data. The immediate data addressing mode points to a 24-bit operand located in
the extension word of the instruction.

Immediate Data into a 24-Bit Accumulator - Example. Transfer the immediate value
$123456 to Accumulator Register A0.

Figure 17: move #$123456,a0

Positive Immediate Data into a 56-Bit Accumulator - Example. Transfer the immediate
value $654321 to accumulator register A. Note that the accumulator register A1 is loaded and
that accumulator register A2 is sign-extended from A1 i.e. A2 holds the value $00 indicating
that the value stored in A1 is positive.

Original
Address Input

Sequence

Original Data
Input Sequence

Bit-Reversed
Address Modifi-
cation (3 LSBs)

Resulting Input
Sequence in Bit-
Reverse Order

1000 = $8
+1
1100 = $C
+1
1010 = $A
+1
1110 = $E
+1
1001 = $9
+1
1101 = $D
+1
1011 = $B
+1
1111 = $F

$8 -> 1000

$9 -> 1001

$A -> 1010

$B -> 1011

$C -> 1100

$D -> 1101

$E -> 1110

$F -> 1111

#0.0

#0.1

#0.2

#0.3

#0.4

#0.5

#0.6

#0.7

$8 -> #0.0

$9 -> #0.4

$A -> #0.2

$B -> #0.6

$C -> #0.1

$D -> #0.5

$E -> #0.3

$F -> #0.7

Bit Reverse Register Setup:
LeT Modifier Register Mn = $000000

Let offset register Nn = 2 k - 1

Let the number of points (Data elements/Table size) = 8

Let beginning of table (lower bound) = 2 k ≥ N, where N = Table size

Let the end of table (upper bound) = 2 k - 1
Let starting point within table = Lower bound ≤ Address register Rn ≤ Upper bound

X X X X X X X X

A2 A1 A0
1 2 3 4 5 6

BEFORE EXECUTION AFTER EXECUTION

X X X X X X X X X X X X X X

A2 A1 A0
18/11/97
Page 19

MOTOROLA

DSP56300 Programming Exercises
Figure 18: move #$654321,a

Negative Immediate Data into 56-bit Accumulator - Example: Transfer the immediate
value $876543 to accumulator register B. Note that the accumulator register B1 is loaded and
that accumulator register B2 is sign-extended from B1 i.e. B2 holds the value $FF indicating
that the value stored in B1 is negative.

Figure 19: move #$876543,b

Immediate Short Data. The immediate short addressing mode points to an 8-bit or a 12-bit
immediate data operand located in the instruction operation word. The immediate data is inter-
preted as an unsigned integer. if the destination register is one of the following 24-bit registers
A2, A1, A0, B2, B1, B0, R0-R7 or N0-N7. The immediate data is transferred into the least
significant bits of the destination with the most significant bits zeroed. The immediate data is
interpreted as a signed fraction if the destination is one of the following 24-bit registers X1,
X0, Y1, Y0, or the 56-bit A and B accumulators. The immediate data is transferred into the
most significant bits of the destination with the least significant bits zeroed.

Immediate Short Data into 24-Bit Register - Example: Transfer the immediate short data
value $FE to accumulator register A1. Note that the immediate data $FE is interpreted as an
unsigned Integer and is transferred into the least significant bits of A1.

Figure 20: move #$FE,a1

Example: Transfer the immediate short data value $FE to data input register Y1. Note that the
immediate data $FE is interpreted as a signed fraction and is transferred into the most signif-
icant bits of Y1.

Figure 21: move #$FE,y1

Immediate Short Data into 56-bit Accumulators - Example: Transfer the immediate short
data value $34 to the accumulator register A. Note that the immediate data $34 is interpreted as
a signed fraction and is transferred into the most significant bits of the accumulator register A
and that accumulator register A2 is sign-extended.

Figure 22: move #$34,a

X X X X X X X X

A2 A1 A0
0 0 0 0 0 0

BEFORE EXECUTION AFTER EXECUTION

X X X X X X 0 0 6 5 4 3 2 1

A2 A1 A0

X X X X X X X X

B2 B1 B0
0 0 0 0 0 0

BEFORE EXECUTION AFTER EXECUTION

X X X X X X F F 8 7 6 5 4 3

B2 B1 B0

X X X X X X X X

A2 A1 A0

BEFORE EXECUTION AFTER EXECUTION

X X X X X X X X 0 0 0 0 F E

A2 A1 A0
X X X X X X

X X X X X X

Y1 Y0
BEFORE EXECUTION AFTER EXECUTION

X X X X X X F E 0 0 0 0

Y1 Y0
X X X X X X

X X X X X X X X

A2 A1 A0
BEFORE EXECUTION AFTER EXECUTION

X X X X X X 0 0 3 4 0 0 0 0

A2 A1 A0
0 0 0 0 0 0
18/11/97
Page 20

MOTOROLA

DSP56300 Programming Exercises
Example. Transfer the immediate short data value $87 to the accumulator register B. Note that
the immediate data $87 is interpreted as a signed fraction and is transferred into the most
significant bits of the accumulator register B and that accumulator register B2 is sign-
extended.

Figure 23: move #$87,b

Absolute Addressing. The absolute addressing mode uses the 24-bit address operand located
in the instruction extension word as a pointer to the location of the data operand.
Example: Transfer the contents of the Y-Memory location pointed to by the instruction
extension word to accumulator register B0.

Figure 24: move y:$1000,b0

Absolute Short Addressing. This mode uses an immediate 6-bit address operand which is
located in the instruction operation word and is zero-extended to form a 24-bit pointer to the
data operand. This mode addresses the lowest 64 words (range 0-63 d, $0-$3F) of X,Y,L data
RAM and interrupt vectors.

Example: Transfer the contents of the accumulator register A1 to the X-Memory location
pointed to by the instruction extension word.

Figure 25: move a1,x:$21

I/O Short Addressing. The I/O short addressing is similar to the absolute short addressing
mode, it also uses an immediate 6-bit address operand which is located in the instruction
operation word but is ones-extended to form a 24-bit pointer to the data operand rather than
zero-extended. This mode addresses the highest 64 words (range 16777152-16777215 d,
$FFFFC0-$FFFFFF) of X or Y memory, and is used with the bit manipulation and move
peripheral data instructions.

X X X X X X X X

B2 B1 B0
BEFORE EXECUTION AFTER EXECUTION

X X X X X X F F 8 7 0 0 0 0

B2 B1 B0
0 0 0 0 0 0

X X X X X X

B1 B0
BEFORE EXECUTION AFTER EXECUTION

X X X X X X X X X X X X

B1 B0
7 6 5 4 3 2

:
7 6 5 4 3 2

:

Y: Memory
023

:
7 6 5 4 3 2

:

Y: Memory
023

$1000$1000

X XX X
B2 B2

7 6 5 4 3 2

A1 A0
BEFORE EXECUTION AFTER EXECUTION

X X X X X X 7 6 5 4 3 2

A1 A0
X X X X X X

:
:

X X X X X X
:
:

X: Memory
023

X: Memory

$00003F

X XX X
A2 A2

$000021

$000000

:
:

7 6 5 4 3 2
:
:

023
$00003F

$000021

$000000

Absolute
Short

Addressing
Range
18/11/97
Page 21

MOTOROLA

DSP56300 Programming Exercises

). This
.

the
plement
of the
sed is

ion
e PC to

ion
xtension

f the
f the Rn
Figure 26: movep a1,x:$FFFFFD

Short Jump Addressing. The short jump addressing mode uses a 12-bit immediate jump
operand which is located in the instruction operation word and is zero-extended to form a 24-
bit “jump to” operand, which is used to replace the contents of the program counter (PC
mode addresses the lowest 4096 words (range 0-4095 d, $0-$000FFF) of program-RAM

Figure 27: jmp <$123

Program Counter Relative Modes. In the program counter relative addressing modes,
address of the operand is obtained by adding a displacement, represented in two’s com
format, to the value of the program counter (PC). The PC points to the address
instruction’s opcode word. The Nn and Mn registers are ignored, and the arithmetic u
always linear.

Short Displacement PC Relative. The short displacement occupies 9-bits in the instruct
operation word. The displacement is first sign extended to 24 bits and then added to th
obtain the address of the operand.

Long Displacement PC Relative. This addressing mode requires one word of instruct
extension. The address of the operand is the sum of the contents of the PC and the e
word.

Address Register PC Relative. The address of the operand is the sum of the contents o
PC and the address register Rn. The Mn and Nn registers are ignored. The contents o
register are unchanged.

A B C D E F

A1 A0
BEFORE EXECUTION AFTER EXECUTION

X X X X X X A B C D E F

A1 A0

X X X X X X

:
:

X X X X X X
:
:

X: Memory
023

X: Memory

$FFFFFF

X XX X

A2 A2

$FFFFFD

$FFFFC0

:
:

A B C D E F
:
:

023
$FFFFFF

$FFFFFD

$FFFFC0

I/O Short
Absolute

Addressing
Space

BEFORE EXECUTION AFTER EXECUTION

:
:

jmp $0123
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

P: Memory
023

P: Memory

$000FFF

:
:
:
:
:
:
:
:
:
:

Next Ins.
Next Ins.

:
:
:
:
:
:

023

$000000

Short
Jump

Addressing
Space

$000000

$000FFF

$001FF9

$000123
PC

PC
18/11/97
Page 22

MOTOROLA

DSP56300 Programming Exercises

e upper
r each

l move
Parallel Data Move Descriptions. Thirty of the sixty-two DSP56300 core instructions allow
an optional parallel data bus movement over the X and/or Y data bus. This allows a data ALU
operation to be executed in parallel with up to two data bus moves during one instruction/clock
cycle. Ten types of parallel moves are permitted, including register to register moves, register
to memory moves, and memory to register moves. For example, the parallel XY memory data
move must specify two independent effective addresses (e.g. (opcode/operand (<eax> and
<eay>) --> add Y, A A,x:(r1)+n1 y1,y:(r5)+)) where one of the effective addresses must use the
lower bank of address registers (R0–R3) while the other effective address must use th
bank of address registers (R4–R7). However, not all addressing modes are allowed fo
type of memory reference. The following paragraphs provide some examples of paralle
operations.

Figure 28: Parallel Data Move Instruction Syntax

Figure 29: Examples of Parallel Data Moves

Opcode Operands Y Bus DataX Bus Data
Source 1 Destination 1 Source 2 Destination 2

Parallel Data Moves

ADD X0, A A, X:(r0)+n0 Y:(r4)-, Y0

SpecifiesSpecifies
1) Up to TWO optional data transfers
2) Two different addressing modes allowed
3) Memory space access X:, Y:, L:, XY:

1) Data ALU Operations
2) Logical Operations
3) Convergent Rounding

Supports
1) Scaling
2) Limiting
3) Sign extension and least significant zero fill
4) Duplicate Sources
5) Duplicate Destinations are NOT ALLOWED.

Supports

1) Condition Code

Opcode/Operand Source 1 Destination 1 Source 2 Destination 2

Parallel Data Move Examples

ADD A, B #$81, A1Immediate Short Data Move

ADD X0, A A1, Y0Register to Register Move

ADD Y1, A (r0)+n0Address Register Update

ADD X1, B B, X:$1000X or Y Memory Move

ADD Y0, A A, X1 Y:(r2)-, Y0X or Y Mem. and Reg. Move

ADD X, A A10, L:$3000L Memory Move

ADD Y, B B, X:(r3)+n3 Y:(r7)+n7, Y1XY Memory Move

D ± (S1 * S2) --------> D MAC X0, Y0, AMAC ± S1, S2, D [Parallel Move]

Multiply and Accumulate Instructions

D ± (S1 * S2) + r ----> DMACR ± ±S1, S2, D [Parallel Move]
X:(r0)+, X0 Y:(r4)-, Y0

MACR -Y0, Y0, B X1, X:(r1)+ B, Y:(r5)-

NOTE: each of these parallel move examples is executed in one single clock/instruction cycle

which means each example is executed in 15.2nsec @ 66MHz, or 12.5nec @ 80MHz.
18/11/97
Page 23

MOTOROLA

DSP56300 Programming Exercises
Test Run

1. Open the file ex2_main.asm in a text editor and take a look at the code and
the comments, respectively. The program contains many short examples of
the various addressing modes that exist within the 56300 family such as:
Register Direct/Indirect, Immediate Data/Short, Absolute Addressing, Short
Addressing, Modulo and Bit-Reverse etc.

2. Assemble the main file by opening a dos shell/unix command window and
from within the correct directory (/ex2) typing:

asm56300 -l -b ex2_main.asm
This will create two new files: ex2_main.cln, which is the file to be passed to
the linker and ex2_main.lst, which is a list file generated by the assembler.

NOTE: If this does not work correctly, ensure that the default path of the machine
was correctly set up during the installation procedure. During assembly, four
warnings will be generated due to pipeline stalls. For detailed information on
this, please refer to exercise one and the DSP56300 family manual [1].

3. View the file ex2.ctl in a text editor window. This is the file which the linker
will reference to decide where to place sections of memory. In this example,
data is located at address x:$100 and y:$100 and the program code is stored at
p:$100.

4. Call the linker to link these files together into an absolute object file which
the simulator can load. Do this by typing:

dsplnk -mex2.map -rex2.ctl -bex2.cld ex2_main.cln
This means that ex2_main.cln will be linked and located using the instruc-
tions in the ex2.ctl linker control file. The output will be a machine loadable
file called ex2.cld, and a map file (ex2.map) showing the location of sections
in memory.

5. Start the simulator. This action is dependant on your development
environment - please refer to [3] for instructions. If the simulator is already
running, RESET the device.

6. If they are not already open, open a:
Session window (MENU: Windows, Session)
Command window (MENU: Windows, Command)
Assembly window (MENU: Windows, Assembly)

The session window will show the state of the device following each step.
The command window can be used to input commands directly or will show
the commands executed using the menus. The assembly window will show
the code in program memory, and will indicate the next instruction to be
executed.
18/11/97
Page 24

MOTOROLA

DSP56300 Programming Exercises

s
s
es

-

7. Open two memory windows, one for X memory and one for Y memory, each
starting at address $100. The input and output matrices appear in these
windows.

8. Load the program ex2.cld into the simulator
(MENU: File, Load, Memory COFF)

Note that the program is now loaded and displayed in the assembly window.

9. As the program demonstrates various addressing modes of the DSP56300, it
is best to split-up the function of each short routine by inserting breakpoints
as follows: Set breakpoints at the following labels/addresses by calling the
prepared macro

‘runex2.cmd', MENU File, Macro:

1st, LABEL: ex2_start ADDRESS: $100
2nd, LABEL: indirect_start ADDRESS: $103
3rd, LABEL: postinc_start ADDRESS: $108
4th, LABEL: predec_start ADDRESS: $10D
5th, LABEL: incoffset_start ADDRESS: $115
6th, LABEL: indexoff_start ADDRESS: $11B
7th, LABEL: modulo_start ADDRESS: $121
8th, LABEL: bitrev_start ADDRESS: $128
9th, LABEL: immed_start ADDRESS: $139
10th, LABEL: posimmed_start ADDRESS: $13B
11th, LABEL: negimmed_start ADDRESS: $13D
12th, LABEL: intshort_start ADDRESS: $13F
13th, LABEL: fractshort_start ADDRESS: $140
14th, LABEL: negfractshort_start ADDRESS: $141
15th, LABEL: absolute_start ADDRESS: $142
16th, LABEL: abshort_start ADDRESS: $148
17th, LABEL: parallel_start ADDRESS: $14B

10. Instruct the simulator to go. It will break once it has completed the operation
between each breakpoint (highlighted in blue). Do not be surprised if it take
a second or so to break! This is a cycle exact simulator and therefore requir
a lot of processing power.

11. The following notes point out what actions you should be looking out for
during each address mode i.e. each conditional breakpoint:

1st Breakpoint: Register Direct Example:
Moves the contents of the 24-bit X0 data input reg. to the 24-bit A1 accumu
lator

2nd Breakpoint: Address Register Indirect Example: No Update (Rn)
Moves the contents of the 24-bit A1 accumulator reg. to X-Memory location
pointed to by address reg. r0.
18/11/97
Page 25

MOTOROLA

DSP56300 Programming Exercises
3rd Breakpoint: Postincrement (Rn)+
Moves the contents of accumulator reg. B0 to the Y-Memory location pointed
to by r1. Once the transfer is complete, r1 is incremented by one.

4th Breakpoint: Predecrement -(Rn)
Predecrement address reg. r3 by one and transfer the X-Memory location
pointed to by the decremented address reg. r3 to the accumulator reg. B.

5th Breakpoint: Postincrement by offset (Rn)+Nn
Moves the contents of data reg. X1 to the X-Memory location pointed to by
address reg. r4. Once the transfer is complete, r4 is updated by adding the
offset contained in n4 to the contents of r4.

6th Breakpoint: Indexed by offset (Rn+Nn)
Moves the contents of data reg. Y0 to the X-Memory location pointed to by
the summation of the contents of the address reg. r6 and the offset reg. n6.
Note that r6 is not updated.

7th Breakpoint: Modulo Addressing
The Modifier Registers Mn are used for Modulo Arithmetic and specifies the
modulus i.e. circular-buffer/table-size. The example code starting at label
"modulo_start" shows the procedure taken for modulo register set-up. R0
points to the data stored in X-Memory defined by: const dc
0,1,2,3,4,5,6,7,8,9. There are 10 items stored, so we therefore set the circular-
buffer to 10-1 = 9 and is stored in M0 to define Modulo addressing, we have
also set up an offset increment of 3, which is stored in N0. The example now
executes a do loop 10 times which moves the contents of the X-Memory
location pointed to by address reg. r0 to the data reg. X0. Once the transfer is
complete, r0 is updated by adding the offset contained in n0 to the contents of
r0, the process is then repeated. The steps taken are:

r0 = $50 X0 = 0 then r0 is updated by n0, r0+n0 = 53
r0 = $53 X0 = 3 then r0 is updated by n0, r0+n0 = 56
r0 = $56 X0 = 6 then r0 is updated by n0, r0+n0 = 59
r0 = $59 X0 = 9 then r0 is updated by n0, r0+n0 = 52
r0 = $52 X0 = 2 then r0 is updated by n0, r0+n0 = 55
r0 = $55 X0 = 5 then r0 is updated by n0, r0+n0 = 58
r0 = $58 X0 = 8 then r0 is updated by n0, r0+n0 = 51
r0 = $51 X0 = 1 then r0 is updated by n0, r0+n0 = 54
r0 = $54 X0 = 4 then r0 is updated by n0, r0+n0 = 57
r0 = $51 X0 = 7 then r0 is updated by n0, r0+n0 = 50
18/11/97
Page 26

MOTOROLA

DSP56300 Programming Exercises
8th Breakpoint: Bit-Reverse Addressing
Reverse carry is selected by setting the modifier register Mn to zero. The
address modification is performed in hardware by propagating the carry in
the reverse direction i.e. from the MSB to the LSB. The example code
starting at label "bitrev_start" shows the procedure taken for bit reverse
register set-up. R0 points to the original input data stored in X-Memory
defined by: orgdatar dc 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8
R4 points to the original input data stored in X-Memory defined by:
orgdatai dc 0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85
The modifier registers m0 and m4 are set to zero for bit-reverse addressing,
the offset registers n0 and n4 are set to the number of data elements divided
by two (i.e. 4). R1 and r5 are set to point to the Modified Bit-Reversed
Address New I/P data sequence (i.e. $200), and the m1, m5 modifier registers
are set to $ffffff for linear addressing.

The example now executes a do loop 8 times which bit-reverses the original
addresses in X- and Y-Memory, and stores the re-ordered data into the new
addresses, as shown below:

X-MEMORY CONTENTS:-
Org. address I/P data seq. ---- Modified bit-reversed address new I/P data seq.
$100 -------> $0ccccd $200 ----------------> $0ccccd
$101 -------> $19999a $201 ----------------> $400000
$102 -------> $266666 $202 ----------------> $266666
$103 -------> $333333 $203 ----------------> $59999a
$104 -------> $400000 $204 ----------------> $19999a
$105 -------> $4ccccd $205 ----------------> $4ccccd
$106 -------> $59999a $206 ----------------> $333333
$107 -------> $666666 $207 ----------------> $666666

Y-MEMORY CONTENTS:-
Org. address I/P data seq. ---- Modified bit-reversed address new I/P data seq.
$100 -------> $133333 $200 ----------------> $133333
$101 -------> $200000 $201 ----------------> $466666
$102 -------> $2ccccd $202 ----------------> $2ccccd
$103 -------> $39999a $203 ----------------> $600000
$104 -------> $466666 $204 ----------------> $200000
$105 -------> $533333 $205 ----------------> $533333
$106 -------> $600000 $206 ----------------> $39999a
$107 -------> $6ccccd $207 ----------------> $6ccccd

9th Breakpoint: Immediate Data
Moves the immediate 24-bit data value to the 24-bit accumulator A0

10th Breakpoint: Positive Immediate Data
Moves the immediate 24-bit data value to the 56-bit accumulator A. Note that
the accumulator reg. A1 is loaded and that the accumulator reg. A2 is sign-
extended from A1 i.e. A2 holds the value $00 indicating that the value stored
in A1 is positive.
18/11/97
Page 27

MOTOROLA

DSP56300 Programming Exercises
11th Breakpoint: Negative Immediate Data
Moves the immediate 24-bit data value to the 56-bit accumulator B. Note that
the accumulator reg. B1 is loaded and that the accumulator reg. B2 is sign-
extended from A1 i.e. B2 holds the value $FF indicating that the value stored
in A1 is negative.

12th Breakpoint: Immediate Short Data into 24-bit Accumulator Registers
Move the immediate short data value to accumulator reg. A1. Note that the
immediate data is interpreted as an unsigned integer and is transferred into
the least significant bits of A1.

13th Breakpoint: Immediate Short Data into 24-bit Accumulator Registers
Move the immediate short data value to data input reg. Y1. Note that the
immediate data is interpreted as an signed fraction and is transferred into the
most significant bits of Y1.

14th Breakpoint: Immediate Short Data into 56-bit Data Registers
Move the immediate short data value to accumulator reg. B. Note that the
immediate data is interpreted as an signed fraction and is transferred into the
most significant bits of the accumulator B and that B2 is sign-extended.

15th Breakpoint: Absolute Addressing
Moves the contents of the Y-Memory location pointed to by the instruction
extension word to accumulator reg. B0.

16th Breakpoint: Short Addressing
Moves the contents of the accumulator reg. A1 to the X-Memory location
short address.

17th Breakpoint: Parallel Data Moves
This example shows you how the 56300 allows a data ALU operation (add
y,b) to be executed in parallel with up to two data bus moves (b,x:(r3)+n3
y:(r7)+n7,y1) during one instruction cycle.

12. You should now be more familiar with the various addressing modes of the
56300.

13. Congratulations......you have completed Exercise 2.
18/11/97
Page 28

MOTOROLA

DSP56300 Programming Exercises

ue to
thought
ppear

ct this

es-

this

ALU
most
r which

 the
l ALU

 in the
n the
ture of
n any
ing the

 into
t calcu-
epre-
EXERCISE 3- DIVISION ON THE DSP56300

Introduction
The DSP56300 core is a 24-bit, fixed point, two’s complement signed, fractional DSP. D
the fractional nature of the DSP, in some cases the arithmetic requires some additional
i.e. if you assume the values are integers then the results of a multiplication may a
incorrect. This section gives some examples of the fractional arithmetic and what effe
has on the coding. The particular example shown is division.

In this exercise you should
• Become more familiar with the fractional arithmetic of the DSP56300
• Learn how to implement a signed fractional division
• Become familiar with stepping, setting breakpoints, and evaluating expr

sions using the DSP56300 simulator

Details of working with fractional and integer arithmetic can be found in [4]. Although
document was written for the DSP56000 most of it applies equally to the DSP56300.

Technical Considerations

Data Representation. The DSP56300 uses a fractional data representation for all data
(Arithmetic Logic Unit) operations. This means that in a normal 24-bit ALU register, the
negative value which can be represented is -1 ($800000) and the most positive numbe

can be represented is 1-2-23($7FFFFF). This means that the user must be aware of how
DSP manipulates the data. The diagram below shows how the DSP sees a typica
register:

This fractional data representation has an effect on almost everything the DSP does
ALU. For example, if your assembly code contains an instruction ‘move #$4F,x0’ the
value stored in x0 is not $00004F as you might expect, but $4F0000. The fractional na
the data representation causes everything to be automatically aligned to the left. If o
occasion you want to have the data value right aligned then this can be achieved us
force long operator, e.g.

Multiplication can also have unexpected results if the fractional arithmetic is not taken
account. For example, if x0 contains $040000 and y0 contains $020000, then the resul
lated by the instruction ‘mpy x0,y0,a’ is a1 = $001000. However, consider the fractional r
sentation and it makes sense:

x0 2-23
S .2-1 2-2 2-3 2-4 2-5 .

decimal point

move #$4F,x0 x0

x0

 $4F0000

 $00004F move #>$4F,x0
18/11/97
Page 29

MOTOROLA

DSP56300 Programming Exercises

t be

. For
m the
t div
 48-bit

ed
, and

hich
divide
 both
routine
nds are
$040000 is equivalent to 2-5 which is equivalent to 0.03125

$020000 is equivalent to 2-6 which is equivalent to 0.015625

$001000 is equivalent to 2-11 which is equivalent to 0.0004882812

2-5 x 2-6 = 2-11

Division on the DSP56300. Division is another arithmetic operation on the DSP56300 which
may appear complex and produces unusual results on first sight. Demonstrating the process of
division is the main aim of this exercise.

The DSP56300 has a DIV instruction. In the explanation of this instruction in [1] states that
this instruction performs a ‘divide iteration’. This means that the DIV instruction mus
repeated a number of times depending on the accuracy of result required.

Each DIV operation calculates one quotient bit using a non-restoring division algorithm
details of the algorithm please refer to [1]. Due to the non-restoring nature of the algorith
remainder which exists following the DIV instruction is not the true remainder. The las
instruction must effectively be reversed to give the true remainder. The remainder is a
value with 24-bits of accuracy. It is essential that it is interpreted this way.

Division of two signed fractions. Each form of division (i.e. signed fractions, unsign
fractions, signed integers, double precision etc.) requires slightly different programming
these are explained in [4].
In this example we shall implement the division of two signed fractions. The subroutine w
executes this division (SIG24DIV) is shown below. This code implements a 4 quadrant
(i.e. a signed dividend and a signed divisor.) Within the main divide part of the routine
variables are positive; the signs of the original inputs are saved at the beginning of the
and restored at the end. This means that, if your algorithm ensures that both opera
always positive, the routine can be greatly simplified.

;Before execution of subroutine, dividend is in accumulator a, divisor is in
register x0.

;After execution of subroutine quotient is in x1, remainder is in b1

SIG24DIV

abs a a,b ;make dividend positive, copy a1 to b1
eor x0,b b,y0 ;save rem. sign in y0, quo sign in N
and #$FE,ccr ;clear carry bit C (quotient sign bit)
rep #$18 ;form a 24-bit quotient
div x0,a ;form quotient in a0, remainder in a1
tfr a,b ;save remainder and quotient in b
jpl saveq ;if quotient is positive, go to saveq
neg b ;complement quotient if N bit is set

saveq tfr x0,b b0,x1 ;saveq. in x1, get signed divisor
abs b ;get absolute value of signed divisor
add a,b ;restore remainder in b1
jclr #23,y0,done ;go to done if remainder is positive
move #$0,b0 ;prevent unwanted carry
neg b ;complement remainder

done
rts
18/11/97
Page 30

MOTOROLA

DSP56300 Programming Exercises
There are four signed division examples in ex3_main.asm, showing the different cases which
are accounted for in the code, i.e. positive dividend, positive divisor; positive dividend,
negative divisor; negative dividend positive divisor; and negative dividend, negative divisor.
However, the results have to be interpreted correctly. Two examples are shown below:

Positive dividend, positive divisor.

Before execution:

After execution of SIG24DIV:

This is to be interpreted as the quotient = $2c807a, and the remainder = $00000016524d

Verifying this result using standard arithmetic:
$123456 is equivalent to 0.1422222, +$00065443563445 is equivalent to 0.04944650373

$2c807a is equivalent to 0.3476708, $00000016524d is equivalent to 1.04 x 10 -8

This result is correct to 24-bit accuracy

Negative dividend, positive divisor.

Before execution:

After execution of SIG24DIV:

Verifying these results using standard fractional arithmetic:
$123456 is equivalent to 0.1422222, $FFFF8734749837 is equivalent to -0.003686373776

$FCAEA9 is equivalent to -0.0259198, $FFFFFFF696AB is equivalent to -4.3825 x 10 -9

This result is correct to 24-bit accuracy.

$00065443563445

 $123456

0.04944650373

0.1422222
 = = 0.347670778

x0 a $123456 $00: 065443: 563445

x1 b $2c807a $00: 16524d: 2c807a

$FFFF8734749837

 $123456

-0.003686373776

0.1422222
 = = -0.025919814

x0 a $123456 $FF: FF8734: 749837

x1 b $FCAEA9 $FF: F696AB: 000000
18/11/97
Page 31

MOTOROLA

DSP56300 Programming Exercises
Test Run

1. The first thing we want to do is demonstrate the basic effects of the fractional
arithmetic. Rather than do this using a pre-written program, we will use the
in-line assembly function of the simulator. First, call the simulator. (The
means for doing this will depend on your development environment - refer to
[3] for instructions)

2. If they are not already open, open a session window, an assembly window,
and a command window.
MENU: Windows, Assembly / Windows, Session / Window, Command

3. Change the device program counter such that it is pointing to internal mem-
ory. This can be done in a number of ways, and each user will have prefer-
ences as to which way they would like to use the simulator.

a. At command line type ’change pc $100’
or
b. MENU: Modify, Change registers, find pc and enter $100 at
’value’ or
c. MENU: Window, Registers, find pc and edit value to $100

4. The Assembly window should now contain instructions starting at p:$100,
with the address p:$100 highlighted. (The instructions should all be nops!).
To edit the instructions at address p:$100, click on the nop and delete.Type in
the new instruction type: ’move #$45,x0’ press return to move to next loca-
tion.

5. Using the method above, enter the small program
p:$100 move #$4f,x0
p:$101 move #>$4f,y0
p:$103 move #$040000,x0
p:$105 move #$020000,y0
p:$107 mpy x0,y0,a

NOTES: In some circumstances the in-line assembler will change the format of the
instruction. Those instructions which move long words are two instruction
words long. This feature of the simulator is especially useful for ’patching’
large pieces of code, so that to change one instruction you do not have to
assemble, link, and re-load the entire program.

6. Step through the small program. Either press the step button on the main win-
dow or enter the word ’step’ at the command window. After each step, exam-
ine the session window to see the effect of the code.
18/11/97
Page 32

MOTOROLA

DSP56300 Programming Exercises
NOTE: Pressing return in the command window repeats the last instruction

7. To verify the results use the evaluate command. There are a number of ways
to do this. Try three different ways to evaluate the previous multiplication.

a. At command line type ’evaluate f $040000’ the fractional equivalent will
appear in the session window.
(To save typing in ’evaluate’ type ’e <space bar>’)

b. MENU: Display, evaluate, type $020000 as expression and press Frac-
tional button for radix.

c. At command line type ’evaluate f a’ to evaluate the result in accumulator a
Division on the DSP56300

8. To assemble this file open a dos shell/ unix command window and ensuring
that you are in the example3 directory type:

asm56300 -b -l ex3_main.asm
This will create two new files: ex3_main.cln, which is the file to be passed to
the linker and ex3_main.lst, which is a list file generated by the assembler.
This assembly will generate a number of pipeline stall warnings. For detailed
information on this, please refer to exercise one and the family manual [1].

NOTE: If this does not work correctly ensure that the default path of the machine was
correctly set up during the installation procedure.

9. Now open the file ’ex3_main.asm’ in a text editor. This file contains the entry
point for the division example, and also contains a subroutine which imple-
ments the division routine.

10. Open file ex3.ctl in a text editor window. This is the file which the linker will
reference to decide where to place sections of memory.

11. Call the linker to link these files together into the so called absolute object
file which the simulator can load. Do this by typing:

dsplnk -mex3.map -bex3.cld -rex3.ctl ex3_main.cln
This means that ex3_main.cln will be linked using the instructions contained
in ex3.ctl. The output will be a machine loadable file called ex3.cld, and a
map file showing the location of sections in memory in ex3.map

12. Load the program ex3.cld into the simulator
(MENU: File, Load, Memory COFF)
18/11/97
Page 33

MOTOROLA

DSP56300 Programming Exercises

-

.
-

f

13. Step through the code until you have reached the first rts (return from subrou-
tine) instruction. Evaluate the results of the division using the evaluate com-
mand

14. For the second execution of the division, we do not want to step through
every instruction. This time step until you reach the first execution of the div
instruction then, at the command window, type ’step 24’. This instruction will
execute 24 steps before returning. Step through until the next ‘rts’ and evalu
ate the results.

15. For the third execution of the division routine we are not interested in any-
thing but the result. Find the rts instruction and double click on its address
This will insert a breakpoint. (The address of that instruction should be high
lighted). Now press the go button on the top menu. The simulator will now
execute until it reaches the breakpoint. Once it breaks, verify the results o
the division using the evaluate command.

16. Congratulations...............you have completed exercise 3!
18/11/97
Page 34

MOTOROLA

DSP56300 Programming Exercises

nt to
ection

Each
]. It is
cument
EXERCISE 4 - FIR FILTER IMPLEMENTATION

Introduction
This example details the implementation of a digital FIR (Finite Impulse Response) filter. In
this exercise you should learn to:

• Use parallel moves to code efficiently
• Implement hardware DO loops, and use the REP instruction
• Set up and use modulo buffers
• Use the simulator to take input from an external source
• Use subroutines, and link a number of .asm files together

Technical Considerations

FIR Filters. It is not the aim of this session to introduce DSP theory, however it is importa
understand the basics of the algorithm you are about to implement. Therefore, this s
contains a short description of the mathematics of FIR filters.

The operation of an FIR filter is represented by the equation:

This can be expanded to:

Graphically the general FIR filter can be shown as:

Figure 30: General Representation of an FIR Filter

Implementation Description
The following paragraphs describe a different feature of the FIR filter implementation.
one is described to provide a basic understanding. For more details please refer to [1
suggested that the files ex4_main.asm and ex4_fir.asm are available as you read this do
as the code will illustrate the examples discussed.

y n[] bkx n k–[]
k 0=

M

∑=
y[n] = output value
x[n-k] = input delayed by k sampling periods
bk = tap values of filter

y n[] b0x n[] b1x n 1–[] b2x n 2–[] ……… bMx n M–[]+ + + +=

delay delay delay delay...

+ ++++

b0 b1 b2 b3 bM

...........

x[n]

y[n]
18/11/97
Page 35

MOTOROLA

DSP56300 Programming Exercises

uffer

n-
hat it

tion, or
 In this
s. This
ne is
wn at
ssed in

his has
ith an

ns do
absolute

ular
isters
of the

e data
lue in
ory.

at our
aches

is we
auses
into a
Defining memory spaces and constants. In this example memory spaces and constants are
defined in a number of ways. Basic memory space is defined using the directive ds (define
storage). This directive reserves the required number of data words and labels them. The
memory locations are not initialised to any value. You will notice that although the org state-
ments are used to define where the data memory should be placed in terms of X and Y, the
address at which they should be stored is not controlled here. This makes the section of code
relocatable. The exact placing of the block in memory is controlled by the linker.

In certain circumstances there are limitations on where certain pieces of data memory have to
be stored. For example, circular buffer must reside on modulo boundaries. This must be
indicated to the assembler and linker and there are a number of ways to do this. If the circular
buffer was to be defined with no initial values, then the directive dsm (define modulo storage)
could be used. However, in this case our circular buffer must contain our tap values, which are
defined using the dc (define constant) directive. To indicate that this set of constants must be
placed in a memory location suitable for a modulo ‘NUM_OF_TAPS’ buffer, we use the b
command.

Hardware DO loops and the REP instruction. A number of methods of looping are demo
strated in this example. The first example is the do forever loop, which does exactly w
suggests and continues forever. A do forever loop can be stopped by a ENDDO instruc
a breakpoint in the code. The second example is probably the most common: do #n.
case every time the loop is entered it is to be executed a constant number of time
constant is therefore part of the instruction. The third example (in the fir_filter) subrouti
the do xx loop. In this case, the number of times the loop will be executed is not kno
assembly time, and could indeed be a variable. In this case the loop count variable is pa
a register.

When the loop contains only one instruction then the rep instruction should be used. T
even less overhead than the hardware do loop. The rep instruction can be used w
immediate value, or have the variable in a register, as in this case.

NOTE: The dor instruction is used here instead of the do instruction. This simply mea
relative and means that the loop address is stored as a relative value rather than an
value.

Modulo buffers. This example uses modulo (circular) buffers to store the taps. Circ
buffers are created in the DSP using the modifier registers (mx). These modifier reg
change the way in which the pointer registers (rx) see the data memory. Full details
operation of the modifier registers can be found in [1].

The modifier registers are reset to $FFFF, which means that the pointer registers se
memory as one continuous block of X, and one continuous block of Y. Changing the va
each modifier register will change the way in which each address register views the mem

Here we will illustrate the use of the modifier register with an example: Let us assume th
filter has 20 taps. We require the address pointer to automatically wrap round when it re
the end of this list, such that it will point once again to the first value on the list. To do th
will change the value in m4 from its default value of $FFFF to $0013 (decimal 19), this c
the address pointer r4 to view the memory in the device as shown below, i.e. split
18/11/97
Page 36

MOTOROLA

DSP56300 Programming Exercises
number of separate memory blocks, each 20 words long, and each circular in nature.

Figure 31: Modulo 20 Buffer

When r4 is pointing within one of these blocks and the pointer is updated to what would
normally be out with this block, the pointer r4 automatically wraps round.
e.g.

NOTE: The use of circular buffers means that the data memory must be placed according to
certain rules. For details of these rules refer to [1].

Setting up input and output files. In order to test the piece of code you have developed you
have to test it using some input values. For some pieces of code this can be achieved by simply
manually inserting values into the relevant registers and memory locations before running the
program and checking the result. This is the method used in some of the other exercises.

In some cases however, it is necessary to test a piece of code with many values, e.g using test
vectors when conforming to a standard, and it would be impractical to insert all the test values
manually. The DSP56300 debugging environment provides a method of connecting files to a
certain memory location, pin, or port, in order that this can act as a peripheral and read values
into the debugger from an external source.

In this case we will connect the external source to memory locations in high Y data memory.
Using high Y memory allows us to use the movep instruction to move data directly from the
high Y memory location into another memory location.

EXAMPLE 1 EXAMPLE 2 EXAMPLE 3

before execution:
r4 = $203,m4=$13

before execution:
r4 = $213,m4=$13

before execution:
r4 = $210, n4 = 6,m4=$13

instruction:
move y:(r4)+,y0

instruction:
move y:(r4)+,y0

instruction:
move y:(r4)+n4,y0

after execution:
r4 = $204

after execution:
r4 = $200

after execution:
r4 = $203

X or Y data memory

$200

$213
18/11/97
Page 37

MOTOROLA

DSP56300 Programming Exercises
NOTE: This description of the use of input and output files is only valid when using the
simulator. When using the ADS system the method is different, for details refer to the ADS
users manual.

The input file should be of ASCII format. Chapter 3 of [3] gives details of the different file
formats. In this example we will use the file ip_data.io on the disk which is in hexadecimal
ASCII format.

A description of how to connect the file to the memory location is given in the section below.

Test Run

1. Open the file ex4_main.asm in a text editor. This file contains the entry point
for the FIR filter program. Within this program there is a call to subroutine
fir_filter.

2. Open the file ex4_fir.asm in a text editor. This file contains the subroutine
which implements the digital filter.

3. Assemble the main file by opening a dos shell/unix command window and
from within the correct directory typing:

asm56300 -b -l ex4_main.asm
This will create two new files: ex4_main.cln, which is the file to be passed to
the linker and ex4_main.lst, which is a list file generated by the assembler

NOTE: If this does not work correctly ensure that the default path of the machine was
correctly set up during the installation procedure.

4. Assemble the filter subroutine file by typing:
asm56300 -b -l ex4_fir.asm

This will generate one pipeline stall warning. For detailed information on
this, please refer to exercise 1 one and the family manual [1].

5. Open up the file ex4.ctl in a text editor window. This is the file which the
linker will reference to decide where to place sections of memory.

6. Call the linker to link these files together into the so called absolute object
file which the simulator can load. Do this by typing:

dsplnk -mex4.map -bex4.cld -rex4.ctl ex4_main.cln ex4_fir.cln
This means that ex4_main.cln and ex4_fir.cln will be linked together using
the instructions contained in ex4.ctl. The output will be a machine loadable
file called ex4.cld, and a map file showing the location of sections in memory
in ex4.map.
18/11/97
Page 38

MOTOROLA

DSP56300 Programming Exercises
7. Call the simulator (The means for doing this will depend on your develop-
ment environment - refer to [3] for instructions) If the simulator is already
running, RESET the device.

8. Load the program ex4.cld into the simulator (MENU: File, Load, Memory
COFF)

9. If they are not already open, open a Session window, a Command window,
and an Assembly window. The session window will show the state of the
device following each step. The command window can be used to input com-
mand directly or will show the commands executed using the menus. The
assembly window will show the code in program memory, and will indicate
the next instruction to be executed.

10. Connect address y:$FFFFEE to the input file ip_data.io (MENU : File, Input,
Open) The input number is 1, the input is from a file, the file is connected to
memory (memory space Y, address $FFFFEE), the radix is hexadecimal, and
the filename is ip_data.io.

11. Connect address y:$FFFFEF to the output file op_data.io (MENU: File, Out-
put, Open) The output number is 1, the input is from memory to file, the radix
is hexadecimal, and the file is op_data.io (if the tools report that the file
exists, instruct it to overwrite.)

12. Set up a conditional breakpoint in the file. We want this test to be able to deal
with any length of input file. The tools can automatically detect the end of
file, and we shall use this here. The first time the device tries to read a value
which isn’t there, it will break. (MENU: Execute, Breakpoints, Set) The
breakpoint number is 1, the type is expression, the action is halt, the expres-
sion is eof

13. Instruct the simulator to go. It will break once it has completed filtering the
entire input file. Do not be surprised if it takes a few minutes to break! This is
a cycle exact simulator and therefore requires a lot of processing power.
When it has finished processing, close the output file (MENU: File, Output,
Close).

14 To ensure that the function has operated correctly, compare op_data.io and
op_ref.io....they should be identical.

15. Congratulations......you have completed Exercise 4
18/11/97
Page 39

MOTOROLA

DSP56300 Programming Exercises
NOTE: When using more complicated test environments it becomes too time con-
suming to type all the commands in manually every time. It is much more
efficient to use command files. A command file (run ex4.cmd) has been cre-
ated from this application. This can be run using MENU: File, Macro. HOW-
EVER, this will only work if: a) the simulator is called while in the exercise3
directory or b) you edit the command file to include the directory of your
files.
18/11/97
Page 40

MOTOROLA

DSP56300 Programming Exercises

P. All
m that

e run
initial
EXERCISE 5 - CALCULATE SQUARE ROOT

Introduction
In this Exercise you should learn how to:

• Calculate a square root on a fixed point DSP
• Test an assembler Function
• Interpret the fractional number format

There are a number of approaches possible for a root calculation on a fixed point DS
these techniques have a certain resolution and a corresponding complexity. The algorith
is shown below has a good resolution with reasonable effort.

Figure 32: Flow Graph of the Root Algorithm

Technical Considerations

Root Algorithm. The root algorithm can be seen as a control loop with 24 iterations to b
until the maximum resolution is achieved. The algorithm is depicted in Figure 32. The

X input

Initial Estimate
in Y0

i = 1

A = Y0

Y0^2 >=X?

B = B + A

B = B >> 1

B = Y1

Y0 = B

Y1 = Y1 >>1

i=24?

i++

B output

N

Y

Y

N

Y1 = Y0
18/11/97
Page 41

MOTOROLA

DSP56300 Programming Exercises
sign checking (see function file ex5_root.asm) and the rounding are not included in the figure.
The root function works with simple approximation and takes advantage of the multiplier unit.
It determines the square value of the actual estimation and compares this one to the input figure
that is stored in the x register.If the square value is smaller, the estimation is increased by the
actual bit position that is subject to the estimation. The algorithm starts with the MSB and goes
down to the LSB. The square root function is shown in Figure 33.

Figure 33: Square Root Function (X=0..1)

Memory Allocation of Long Words. If a part of the memory space is used for long words (48
bit format), the memory allocation should be controlled such that there is no (or a minimum)
gap between the l section and the x: and y: sections before or after it.

Since the x: and y: memory is concatenated for l: data, the allocation can be most efficiently
controlled by moving all the long sections at the very beginning of the data memory, this is
done in ex5.ctl, it is shown in Figure 34 as well.

Figure 34: Long Memory Allocation

0 10.25 0.5

1

X

sqrt(X)

x: y:

DataData

y_1x_1

y_2
y_3

l_1
y_4

x_2

Unused Memory Area

x: y:

DataData

y_1x_1

y_2
y_3

l_1

y_4

x_2Better:
18/11/97
Page 42

MOTOROLA

DSP56300 Programming Exercises

in 2’s

ed from
e error

f
Implementation Description
The program is written as simple as possible to emphasise the main functionality. Thus, the
main file consists only of the test data (5 numbers) to be checked and a main program of a few
lines. Within this main loop, the function is called five times with the test data listed in the
table below.

Due to the two rounding modes that can be adjusted in the mode registers, we get in this case
two sets of possible results: either the left column which was processed in the convergent
rounding mode, or the right column obtained by processing the same set of data
complement rounding mode. Please refer to [1], p.3-8, p.6-15 for details on rounding.

In addition to that, test data was chosen such that the most extreme results are obtain
the function and these input figures should be tested here for both rounding modes. Th
cases are covered as well, i.e.

a) the saturation mode, it was set to the arithmetic option so that an area o
overflow near the maximum can be avoided (otherwise the rounding
produces $800000 in certain cases).

b) negative inputs are ignored, the output is set to zero.

Input (48 bit)
Result I

(Convergent)
Result II

(2’s Complement)

1 0 1

$7ffffc 000000 $7fffff $7fffff

$7ffffc 000000 $7ffffe $7ffffe

$200000 000000 $400000 $400001

$ffffff ffffff 0 0
18/11/97
Page 43

MOTOROLA

DSP56300 Programming Exercises

s-
h

'

-

Test Run

1. Open the file ex5_main.asm and take a look at the code and the comments,
respectively. Do the same with the function file ex5_root.asm.

2. Run the command file to assemble and link the code: Call ’do-ex5.bat’. This is
easier than typing the complete command line all the time. To see what is
happening, you may take a look at it as well. The two pipeline stall warnings
are completely uncritical at this point, please refer to Ex1 for explanations.

3. Call the simulator now, look for the directory /tutorial/ex5 and load ’ex5.cld’.
(MENU:File, Load, Memory COFF)

4. Open an assembly window (MENU: Windows, Assembly) and one to
observe the results (MENU: Windows, Memory, then select ‘L’ memory
space). If you want to check the results on-line, you can either take the regi
ters refer to documentation during the root calculation or add watches, whic
may be more convenient to look at (MENU: Windows, Watch, add symbol).

5. If you want to observe the function call you may step through until the func-
tion is called the first time. If not just set a breakpoint at the label 'check
(MENU:"Execute, Breakpoints, Set") and run the function for the 5 inputs
provided.

6. You can either calculate the examples before running them or check them
while stepping through.

7. If you get the same results, well done. For more information on the data for
mat and the algorithms, please refer to the documentation.
18/11/97
Page 44

MOTOROLA

DSP56300 Programming Exercises

rays
image
e data
mple

ids the
e A, B

d P=3

ith a
ple is
sions

ation
details

are
ace in
ce for

ices to
g from
EXERCISE 6- MATRIX MULTIPLICATION

Introduction

This exercise follows the implementation of a matrix multiplication and highlights a number of
points:

• Use parallel moves to code efficiently.
• Implementation of nested hardware DO loops and use the REP instruction.
• Set up and use modulo buffers.

Technical Considerations

Matrix Multiplication. Matrices are commonly used to store multidimensional data in ar
in signal processing, control systems (to store coefficients of differential equations) and
processing applications (graphical data is stored in two dimensional arrays). Thes
matrices are manipulated by multiplying them with other matrices of coefficients. An exa
of a matrix multiplication is shown below:

The fractional data shown above is used throughout this exercise (the use of fraction avo
necessity to add conversion routines for integers or real numbers). The dimensions of th
and C matrices are defined as N x M, M x P and N x P respectively where N=2, M=4 an

To implement a two dimensional matrix multiplication, three nested loops are required w
total of twenty-four multiply accumulates for this example. The code used in this exam
generic and contains definitions for the N, M and P dimensions. If any of these dimen
were one, then this generic code can be simplified.

Implementation Description
Each of the following paragraphs describe a different feature of the matrix multiplic
implementation. Each one is described to allow for basic understanding. For more
please refer to [1].

Defining memory spaces and constants. In this example memory spaces and constants
defined using the dc (define constant) directive. The dc directive allocates one word of sp
memory for each data entry and fills these words with the A and B matrix data. The spa
the result C matrix is cleared.

The data in each matrix is stored row by row. This convention is used for all three matr
make it easier to read and to make the routine generic enough to take matrices resultin
other calculations without transposition.

0.10 0.11 0.12 0.13

0.20 0.21 0.22 0.23

0.32 0.52 0.72

0.34 0.54 0.74

0.36 0.56 0.74

0.38 0.58 0.78

× 0.162 0.254 0.346

0.302 0.474 0.646
=

A B C

2 x 4 4 x 3 2 x 3
18/11/97
Page 45

MOTOROLA

DSP56300 Programming Exercises
The data storage arrangement and locations are shown below:

Hardware DO loop and the REP instruction. Two methods of looping are demonstrated in
this example - the do #n loop and the rep instruction. These loops are nested.

The dor (do relative) instruction is used here instead of the do instruction to ensure that the
loop addresses are stored as a relative rather than absolute values. The two do #n loop are
executed a constant number of times and this constant is made part of the instruction by the
assembler and linker. There are sixteen locations in the stack so up to sixteen do loops could be
nested before stack manipulation is needed, provided that no other use is made of the stack.

When a loop contains only one instruction, the rep instruction should be used because this has
less overhead than the hardware do loop. The rep instruction can be used with an immediate
value, as in this case, or have the variable in a register.

Both the do and rep instructions use the loop counter (LC) register to control the loop
operation. The loop counter is a down counter and the loop exits when the LC reaches zero.
There is no iteration of the loop when the LC is zero so it cannot easily be used as an offset into
the memory arrays storing the matrices.

Also in matrix multiplication, two indexing pointers are needed because a row from the A
matrix is multiply/accumulated with a column from the B matrix. This is not conveniently
arranged using the loop counters since only the LC from the inner loop is readily available (the
outer LC is on the stack).

X Memory Y Memory

$100 0.10 Matrix A $100 0.32 Matrix B

0.11 0.52

0.12 0.72

0.13 0.34

0.20 0.54

0.21 0.74

0.22 0.36

0.23 0.56

$108 0.162 Matrix C 0.76

0.254 0.38

0.346 0.58

0.302 0.78

0.474

0.646
18/11/97
Page 46

MOTOROLA

DSP56300 Programming Exercises
Modulo Buffers. As previously mentioned, the data in each matrix is stored row by row.
When accessing consecutive data entries in the A and C matrices, the address pointer only
needs to be post-incremented by one after each access. During the multiplication process, data
in the B matrix must be accessed column by column, so the address pointer must be post-
incremented by three after each access.

To implement these incremental addresses, modulo buffers are used for the A and B matrices.
After each operation of the inner loop (the one with the rep instruction), the pointer into the A
matrix needs to be pointing to the start of the same row and pointer to the B matrix needs to
point to the next column. If modulo buffers were not used, then additional registers would be
needed to hold pointers to the beginning of each row/column in A/B matrices and these would
need to be loaded into the incrementing data pointers at the start of the appropriate loops.

The modulo (circular) buffers are created in the DSP using the modifier registers (mx). These
modifier registers change the way in which the pointer registers (r0~7) use the data memory.
Full details of the operation of the modifier registers can be found in exercises 2 and 4.

The A matrix pointer (register r0) is implemented as a modulo four counter (register m0=3) so
that it automatically wraps round at the end of each operation of the inner loop. At the end of
loop2, register r0 is incremented by four so that the next row of the A matrix is accessed.

The B matrix pointer (register r4) is implemented as a modulo twelve counter (register m4=11)
so that it automatically wraps round at the end of each operation of the inner loop. At the end
of each inner loop operation, register r4 is incremented by three so that the next column of the
B matrix is accessed in loop2.

The C matrix is implemented as a simple buffer without modulo addressing using register r1 as
the address pointer (register m1=$ffff by default after reset).

NOTE: The use of circular buffers means that the data memory must be placed according to
certain rules. For details of these rules refer to [1]. When defining the data and storage
locations for the A and B matrices, the buffer directive is used to ensure correct alignment of
the data in memory.
18/11/97
Page 47

MOTOROLA

DSP56300 Programming Exercises
Test Run

1. Open the file ex6_main.asm in a text editor. This file contains the entry point
for the matrix multiplication program.

2. Assemble the main file by opening a dos shell/unix command window and
from within the correct directory typing:

asm56300 -l -b ex6_main.asm
This will create two new files: ex6_main.cln, which is the file to be passed to
the linker and ex5_main.lst, which is a list file generated by the assembler.

NOTE: If this does not work correctly, ensure that the default path of the machine
was correctly set up during the installation procedure. During assembly, two
warnings will be generated due to pipeline stalls.For detailed information on
this, please refer to exercise 1 and [1].

3. View the file ex6.ctl in a text editor window. This is the file which the linker
will reference to decide where to place sections of memory. In this example,
data is located at address x:$100 and y:$100 and the program code is stored at
p:$100.

4. Call the linker to link these files together into something which the simulator
can load. Do this by typing:

dsplnk -mex6.map -rex6.ctl -bex6.cld ex6_main.cln
This means that ex6_main.cln will be linked and located using the instruc-
tions in the ex6.ctl linker control file. The output will be a machine loadable
file called ex6.cld, and a map file (ex6.map) showing the location of sections
in memory.

5. Change the working directory to the one containing the files for exercise 6
and start the simulator. The means for doing this will depend on your devel-
opment environment - refer to [3] for instructions. If the simulator is already
running, RESET the device.

6. If they are not already open, open a Session window, a Command window
and an Assembly window. The session window will show the state of the
device following each step. The command window can be used to input com-
mand directly or will show the commands executed using the menus. The
assembly window will show the code in program memory, and will indicate
the next instruction to be executed.

7. Open two memory windows, one for X memory and one for Y memory, each
starting at address $100. The input and output matrices appear in these win-
dows.
18/11/97
Page 48

MOTOROLA

DSP56300 Programming Exercises
8. The matrix multiply examples use fractional data so change the radix of the X
and Y memory windows and the a0 and a1 registers using the following:

MENU: Modify, Radix, Set Display - Select Fractional button, X memory
from $100 to $140.
MENU: Modify, Radix, Set Display - Select Fractional button, Y memory
from $100 to $120.
MENU: Modify, Radix, Set Display - Select Fractional button, a0 and a1 reg-
isters.

9. Load the program ex6.cld into the simulator (MENU: File, Load, Memory
COFF and select the ex6.cld file). The code will appear in the Assembly win-
dow, the input matrices in X and Y memory starting at address $100 and the
result area in X memory is cleared.

10. Set a breakpoint at address p:$114, the first instruction after the calculation
loops. You can do this either by double clicking on the address in the Assem-
bly window or using the menu (MENU: Execute, Breakpoints, Set and select
execute memory $114). Once the breakpoint is set, the address in the Assem-
bly window turns blue.

11. First time around we will check that the code operates as expected and see
how many cycles are needed to run. Check that the PC is set to $100 (the
address $100 will be red in the Assembly window) and then press the GO
button. After a few seconds, execution is complete and the results can be seen
in the X memory window at addresses x:$108 to x:$10d. Results are dis-
played in fractional form. Verify that these are correct by comparing them to
the ones given in the source code file and in the lab instructions. Check the
cycle counter in the Session window. The execution time is 136 clock cycles.

12. Now repeat step 9 and reload the code and data. Notice that the breakpoint at
address p:$114 remains set - this is the way the simulator operates. The PC
and memory spaces are reset to allow operation again.

13. Step the program many times until address p:$113 is reached. At this point,
the inner loop has been executed 12 times and the first row of the result
matrix has been calculated. While stepping through the loops, you will notice
that the data stored in the a0 and a1 registers and the memory is displayed in
fractional form while the same data read into the x0 and y0 registers is dis-
played in hex form. Once address p:$113 is reached, press GO to complete
the calculation without stopping again.

14. Congratulations......you have completed Exercise 6.
18/11/97
Page 49

MOTOROLA

DSP56300 Programming Exercises

56300
ples do
les. The

s:

 by
re not to
tion for
ition to
 list of

 and

e. Take
as not
e the

cep-

ents in
EXERCISE 7 - SELECTED INSTRUCTION EXAMPLES

Introduction
In this exercise you can see how the following instructions are used:

• BRKcc
• DEBUGcc
• IFcc
• CMP
• ENDDO.

Technical Considerations
The instructions covered in this exercise are the most frequently questioned by the
users. Therefore, examples of code are shown here to clarify the use of them. The exam
not have a certain sense or function, they are just standalone demonstration code samp
instructions themselves are all described in [1].

There are a few special topics you should be aware of when looking at these instruction

Sequence Restrictions. The BRKcc instruction is one of the instructions that are affected
the so called sequence restrictions. This means that certain sequences of instructions a
be used, because they would cause undefined states in the DSP. The BRKcc instruc
example needs one instruction delay for the condition to be tested (see Code). In add
this, it should never be one of the last three instructions of a do loop. For the detailed
sequence restrictions, please take a look at page B-21 in [1].

DEBUGcc. This instruction acts like a breakpoint in a running program. It stops the core
waits for commands on the emulator interface.

IFcc. The IFcc Instruction has a special format that is easier to understand in an exampl
a look at the code of the second example and you will immediately see, that the IFcc h
the format of a full, single instruction, it is rather treated as an option to an instruction lik
parallel moves.

CMP. The cmp instruction is just shown to make the flag conditions transparent.

ENDDO. Finally the ENDDO instruction is applied to show how easy and effective ex
tions may be handled in a hardware loop.

Implementation Description
The implementation of the examples should be understood with the help of the comm
the code.
18/11/97
Page 50

MOTOROLA

DSP56300 Programming Exercises
Test Run

1. Open the file ex7_main.asm and take a look at the code and the comments,
respectively.

2. Run the command file to assemble and link the code: Call ’do_ex7.bat’.

3. Call the simulator now, look for the directory /tutorial/ex7 and load ’ex7.cld’.
(MENU:File, Load, Memory COFF)

4. Open an assembly window (MENU:Windows, Assembly) and 2 register win-
dows to observe the actions.

5. Now, if you want, you can set a breakpoint to the first line of the example you
are interested in and then step through the instructions.

6. If you are just reading this exercise to get general information, you can step
through all the examples and observe the events on the core.

7. Congratulations......you have completed Exercise 7.
18/11/97
Page 51

MOTOROLA

DSP56300 Programming Exercises

et is

ke the
tures:

m: A
licates
nal can
EXERCISE 8- POWER ANALYSIS

Introduction
In this Exercise you should learn how to:

• Generate simple test signals in memory
• Allocate long words in memory
• Use the max instruction
• Calculate a sliding window of a complex signal
• Do a threshold classification

Technical Considerations

Assembler Directives. Using assembler directives, options and macros (the complete s
listed in [3]) can save a lot of work during signal processing code development.

Therefore, you should be aware of what the tools are capable to do and how to ma
maximum use of them. The assembler provides the following large number of useful fea

a) within Expressions, you can use:
• trigonometrical functions
• format conversions
• counting
• checksums
• list/nolist
• locate code and data

b) with directives, you can build
• conditional assembly
• control structures (loops, for, if, ..)
• sections, regions, buffers
• logical links between them
• macros

c) using the options, you can
• count cycles
• control comments
• control and generate messages
• control the assembler operation (addressing, formats, ..)
• control the output file format

An example of a possible application is shown in the beginning of the file ex8_main.as
complex signal of 300 samples is generated within a few lines. The directive DUPF dup
an assembly line with optional parameters as often as you specify it. The generated sig
be seen in Figure 35.
18/11/97
Page 52

MOTOROLA

DSP56300 Programming Exercises
Figure 35: Generated Signal

Signal Power Calculation. The power of a complex sampled signal in general can be calcu-
lated as follows:

A power calculation practically always is generated from a certain window of the signal that is
most of the cases sampled continuously. Therefore, with a window size of M and a signal
length of N, the following equation for the unnormalised power of a windowed signal can be
given:

In the code example, N=300 and M=3 is chosen to demonstrate the power calculation.

The calculated power is then classified logarithmically. The steps are here 1..10^14, where
power class 1 means the level is between 1 (10^0) and 10^1.

Implementation Description
The assembler file ex8_main.asm contains just the initialisation of data (signal and look up
table) and a simple main program with address initialisation and function call. The parameters
for the function are two pointers to the first samples of the real (I) and imaginary (Q) input
signal parts, and the number of samples in the input signal to be taken for the power calcu-
lation.

Since it is normally not a variable, the length of the window is set to three implicitly by the
implementation of the function, i.e. if the size should be changed, the function has to be
changed. The main loop in the function takes 6 cycles for execution for each window including

0

20000

40000

60000

80000

100000

120000

140000

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244 253 262 271 280 289 298

ps I µ()2
Q µ()2

+

µ
∑=

ps i() I µ i+()2
Q µ i+()2

+

µ 0=

µ M 1–=

∑=

i 0.…N M–=
18/11/97
Page 53

MOTOROLA

DSP56300 Programming Exercises

ts,

a

 is

l

the maximum function and the related address storage.

The power classification is done with a loop of constant execution time, i.e. the loop is
performed for all the power classes, no matter if the maximum found was power class 1 or 13.
The number for the power class is derived from the address of the look up table in long
memory directly. For the description of the memory use for long and short words, refer to
“EXERCISE 5 - CALCULATE SQUARE ROOT” on page 41, please.

Test Run

1. Open the file ex8_main.asm and take a look at the code and the commen
respectively. Do the same with the function file ex7_func.asm.

2. Run the command file to assemble and link the code: Call 'do_ex8.bat'.

3. Call the simulator now, look for the directory /tutorial/ex8 and load 'ex8.cld'.
(MENU:File, Load, Memory COFF)

4. Open an assembly window (MENU:Windows, Assembly). You may open
one or more memory windows to take a look at the generated input dat
(MENU:Wondows,Memory, Select either x (real data, $100..),y (imag data,
$100..), or l (look up table, $0..) space).

5. Now, if you want, you can insert a breakpoint in the first do-loop to check,
how the maxima are detected, updated and how the corresponding address
stored.

6. At the end of this loop, the maximum level stored is subject to a power leve
classification. Check the output now: x0 = $d -> power class 13
(10E12..10E13) b = $1db0 7f465 -> signal power of maximum sample win-
dow r1 = $195 -> start address of the maximum window

7. If the numbers are correct, well done.
18/11/97
Page 54

MOTOROLA

DSP56300 Programming Exercises

cture.
tion

l

-
-

a

Further Support
During the exercises you should have seen the basic principles of signal processing and their
applications to different problems using some of the key features of the Motorola DSP56300
core.

Hopefully these exercises would have helped you progress with Motorola’s DSP archite
If you are continuing to design with Motorola DSPs and would like more detailed infoma
on any of the topic’s listed below, please contact your local Motorola distributor.

1. Documentation.
All the documentation referenced on page 5 is available via your loca
Motorola distributor.

2. Software Development and Evaluation.

Software:
You can run your DSP code clock exact on the GUI Simulator. This means
that the simulator will behave exactly like the hardware that is currently
available. The simulator package contains peripheral simulations for all cur
rently available devices using the DSP56300 core. Therefore you can simu
late almost every external communication with file I/O connected to the
ports.

Hardware:
DSP development hardware maybe purchased i.e. an ADS (Application
Development System) or an EVM (Evaluation module - only available for
some DSP56300 derivatives) sytems.

3. Training.
Training courses can be provided on the DSP56300 family which includes
more detailed introduction to:

the architecture,
the features,
the hardware,
the peripherals,
the tools.

4. Software Support.
Motorola, and a number of third party companies can provide applications
software for the DSP56000/DSP56300 families, please request a list from
your distributor.

5. Other Topics. Please contact the Motorola Helpline:
dsphelp@dsp.sps.mot.com

Or view the Motorola DSP pages on the World Wide Web :
http://www2.motorola-dsp.com/dsp/
18/11/97
Page 55

MOTOROLA

	INTRODUCTION TO THE DSP56300
	INTRODUCTION TO THE DSP56300
	An Approach in 8 Exercises
	1. Purpose of the Exercises
	The Exercise Code
	The Exercise Documentation

	List of Exercises
	Exercise 1: Calculate a Sum of Products
	Exercise 2: Addressing Modes
	Exercise 3: Division
	Exercise 4: FIR Filtering
	Exercise 5: Root calculation
	Exercise 6: Matrix multiplication
	Exercise 7: Selected Instruction Examples
	Exercise 8: Power Analysis

	2. How to get an executable file from assembler co...
	3. The DSP56300 Memory Map
	4. Recommended Reading
	5 References
	EXERCISE 1 - CALCULATE A SUM OF PRODUCTS
	Introduction
	Technical Considerations
	Performing Operations in the 56300
	Program Control Unit (PCU)

	Implementation Description
	Test Run

	EXERCISE 2 - ADDRESSING MODES
	Introduction
	Technical Considerations
	AGU Architecture
	The AGU Programming Model
	Address Modifier Types
	Register Direct Mode
	Address Register Indirect Modes
	No Update (Rn) - Example:
	Postincrement by one (Rn)+ - Example:
	Postdecrement by one (Rn)- - Example
	Predecrement by one -(Rn) - Example
	Postincrement by Offset (Rn)+Nn - Example
	Postdecrement by Offset (Rn)-Nn - Example
	Indexed by Offset (Rn+Nn) - Example
	Modifier Register Usage
	Modulo Addressing (Mn = Modulus-1)
	Reverse-Carry Addressing (Mn = $000000)
	Special Addressing Modes
	Immediate Data
	Immediate Data into a 24-Bit Accumulator - Example...
	Positive Immediate Data into a 56-Bit Accumulator ...
	Negative Immediate Data into 56-bit Accumulator - ...
	Immediate Short Data
	Immediate Short Data into 24-Bit Register - Exampl...
	Example:
	Immediate Short Data into 56-bit Accumulators - Ex...
	Example
	Absolute Addressing
	Absolute Short Addressing
	I/O Short Addressing
	Short Jump Addressing
	Program Counter Relative Modes
	Short Displacement PC Relative
	Long Displacement PC Relative
	Address Register PC Relative
	Parallel Data Move Descriptions

	Test Run

	EXERCISE 3- DIVISION ON THE DSP56300
	Introduction
	Technical Considerations
	Data Representation
	Division on the DSP56300
	Division of two signed fractions
	Positive dividend, positive divisor
	Negative dividend, positive divisor

	Test Run

	EXERCISE 4 - FIR FILTER IMPLEMENTATION
	Introduction
	Technical Considerations
	FIR Filters

	Implementation Description
	Defining memory spaces and constants
	Hardware DO loops and the REP instruction
	Modulo buffers
	Setting up input and output files

	EXERCISE 5 - CALCULATE SQUARE ROOT
	Introduction
	Technical Considerations
	Root Algorithm
	Memory Allocation of Long Words

	Implementation Description
	Test Run

	EXERCISE 6- MATRIX MULTIPLICATION
	Introduction
	Technical Considerations
	Matrix Multiplication

	Implementation Description
	Defining memory spaces and constants
	Hardware DO loop and the REP instruction
	Modulo Buffers

	Test Run

	EXERCISE 7 - SELECTED INSTRUCTION EXAMPLES
	Introduction
	Technical Considerations
	Sequence Restrictions
	DEBUGcc
	IFcc
	CMP
	ENDDO

	Implementation Description
	Test Run

	EXERCISE 8- POWER ANALYSIS
	Introduction
	Technical Considerations
	Assembler Directives
	Signal Power Calculation

	Implementation Description
	Test Run

	Further Support
	Documentation
	Software Development and Evaluation
	Training
	Software Support
	Other Topics

