

Signal

-->a=-2%Jpi;b=1;c=18%*)pi;d=1;

-->sl=syslin(’c’,a,b,c,d);

Processi
With

-120 -
-130 -
-140 -
-150 -
-160

Magnitude

10

0,

Scilab

-180
-1
10

| —->82ms42Upi* (15-100%%i)

10 10 10

-->h1=1/real (S1%S2)

1344

1212 ;
10.79 ;
9.47 ;
8.14 ;
6.81 ;
5.49 ;
4.16 ;
284 ;

151 —

7.44

10.23 13.02

-->h2=ss52tf(sl);

15.82 18.61 2141 24.20 27.00 29.79 3258

Scilab Group

-->bode (h1%h2,.1,1000,.01);

IGNAL
ROCESSING
ITH

CILAB

NSV

Scilab Group

INRIA Meta2 Project/ENPC Cergrene

INRIA - Unite de recherche de Rocquencourt - Projet Meta2
Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)
E-mail : scilab@inria.fr

Acknowledgement

This document is an updated version of a primary work by Carey Bunks, disabelebecque, Georges
Le Vey and Serge Steer

Contents

1 Description of the Basic Tools 1
1.1 Introduction. e e e 1
1.2 Signals o . e 1

1.2.1 Saving, Loading, Reading, and Writing Files. 2
1.2.2 Simulation of Random Signals. o 3
1.3 Polynomials and System Transfer Functions. 4
1.3.1 Evaluationof Polynomials 8
1.3.2 Representation of Transfer Functions. 9
1.4 State Space Representation e 9
1.5 Changing System Representation. 9
1.6 Interconnecting SYStems. e e e e e 11
1.7 Discretizing Continuous Systems e e e 12
1.8 FilteringofSignals. e e e 14
1.9 Plotting Signals. e e e 15
1.10 Development of Signal ProcessingTools 19

2 Representation of Signals 21

2.1 Frequency Response e e 21
211 BodePlots. e 21
2.1.2 PhaseandGroupDelay e 27
2.1.3 Appendix: Scilab Code Used to Generate Examples. 35

2.2 Sampling e 37

2.3 Decimation and Interpolation. 40
2.3.1 Introduction e e e e e e 42
2.3.2 Interpolation e e 43
2.3.3 Decimation. e 44
2.3.4 Interpolation and Decimation. e 44
2.3.5 Examplesusinmtdec e 46

24 TheDFTandthe FFT e e e e e e 46
2.4.1 IntroduCtion e e e e e e 46
2.4.2 Examples Using thi& Primitive 51

25 Convolution. L e 54
25.1 Introduction e e 54
2.5.2 Useoftheonvol function., 55

2.6 The ChirpZ-Transform e 56
2.6.1 Introduction e e e 56
2.6.2 Calculatingthe CZT. 58
2.6.3 Examples. 59

3 FIR Filters 63

3.1 Windowing Techniques e 63
3.1.1 Filter Types. o e e e e 64
3.1.2 Choice of WINdOWS e 66
3.1.3 Howtouseviir e e 69
3.1.4 Examples. 70

3.2 Frequency Sampling Technique e 72

3.3 Optimalfilters. e 74
3.3.1 Minimax Approximation. e e 75
3.3.2 TheRemez Algorithm. e 76
3.3.3 Functiomemezb 77
3.3.4 Examples Using the functisemezb, 78
3.3.5 Scilab functioregfir 81

4 IR Filters 85

4.1 Analogfilters e e e e e 85
4.1.1 Butterworth Filters. e 85
4.1.2 Chebyshevfilters 88
4.1.3 Ellipticfilters. e e e e e e 94

4.2 Design of lIR Filters From Analog Filters 106

4.3 Approximation of Analog Filters 107
4.3.1 Approximation ofthe Derivative 107
4.3.2 Approximation ofthelIntegral, 108

44 DesignofLowPassFilters 109

4.5 Transforming Low PassFilters. 112

4.6 HowtoUsethe Functioiir 113

4.7 Examples. e e e e e 114

4.8 Another Implementation of Digital IR Filters 115
48.1 Theeqiir function 115
4.8.2 Examples. e e 116

5 Spectral Estimation 121

5.1 Estimation of Power Spectra 121

5.2 The Modified Periodogram Method 122
5.2.1 Example Using thpspect function 123

5.3 The Correlation Method. e 126
5.3.1 Example Using the functiasspect 126

5.4 The Maximum Entropy Method. 127
54.1 Introduction e e 127
5.4.2 The Maximum Entropy Spectral Estimate 128
5.4.3 TheLevinson Algorithm. 129
5.44 HowtoUsenese e 129
545 HowtoUsdev e 130

54.6 Examples. 130

6 Optimal Filtering and Smoothing 133
6.1 TheKalmanFilter e e 133
6.1.1 Conditional Statistics of a Gaussian Random Vector 133
6.1.2 Linear Systems and Gaussian Random Vectors. 134
6.1.3 Recursive Estimation of Gaussian Random Vectors. 135
6.1.4 The Kalman Filter Equations. 136
6.1.5 Asymptotic Properties of the Kalman Filter. 138
6.1.6 HowtoUsetheMacrsskf 139
6.1.7 AnExample Usingtheskf Macro. 139
6.1.8 HowtoUsethe Functidmalm 140
6.1.9 Examples Using tHealm Function. 140
6.2 The Square RootKalmanFilter. 149
6.2.1 The Householder Transformation. 151
6.2.2 HowtoUsethe Macrerkf, 152
6.3 TheWiener Filter. e e e 153
6.3.1 Problem Formulation e 153
6.3.2 Howto Usethe Functiomiener 156
6.3.3 EXample e e e 157
7 Optimization in filter design 161
7.1 Optimized lIRfilters e 161
7.1.1 MinimumLpdesign. e e e e 161
7.2 Optimized FIRAilters. e 170
8 Stochastic realization 175
8.1 Thesfact primitive 176
8.2 Spectral Factorization via state-spacemodels 177
8.2.1 Spectral Study. 177
8.2.2 TheFilterModel. e 178
8.3 Computingthesolution 179
8.3.1 Estimation ofthematricesHFG 179
8.3.2 computation of thefilter. 180
8.4 Levinsonfiltering. e e 183
8.4.1 Thelevinsonalgorithm. 184
9 Time-Frequency representations of signals 187
9.1 The Wignerdistribution 187
9.2 Time-frequency spectral estimation 0o 188

Bibliography 191

Chapter 1

Description of the Basic Tools

1.1 Introduction

The purpose of this document is to illustrate the use of the Scilab software package in a signal processing
context. We have gathered a collection of signal processing algorithms which have been implemented as
Scilab functions.

This manual is in part a pedagogical tool concerning the study of signal processing and in part a practical
guide to using the signal processing tools available in Scilab. For those who are already well versed in the
study of signal processing the tutorial parts of the manual will be of less interest.

For each signal processing tool available in the signal processing toolbox there is a tutorial section in
the manual explaining the methodology behind the technique. This section is followed by a section which
describes the use of a function designed to accomplish the signal processing described in the preceding sec-
tions. At this point the reader is encouraged to launch a Scilab session and to consult the on-line help related
to the function in order to get the precise and complete description (syntax, description of its functionality,
examples and related functions). This section is in turn followed by an examples section demonstrating the
use of the function. In general, the example section illustrates more clearly than the syntax section how to
use the different modes of the function.

In this manual theypewriter-face font is used to indicate either a function name or an example
dialogue which occurs in Scilab.

Each signal processing subject is illustrated by examples and figures which were demonstrated using
Scilab. To further assist the user, there exists for each example and figure an executable file which recreates
the example or figure. To execute an example or figure one uses the following Scilab command

-->exec('file.name’)

which causes Scilab to execute all the Scilab commands contained in the fileftallmne
To know what signal processing tools are available in Scilab one would type

-->disp(siglib)

which produces a list of all the signal processing functions available in the signal processing library.

1.2 Signals

For signal processing the first point to know is how to load and save signals or only small portions of lengthy
signals that are to be used or are to be generated by Scilab. Finally, the generation of synthetic (random)
signals is an important tool in the development in implementation of signal processing tools. This section
addresses all of these topics.

z CHAPTERL DESGRIFPTION OF THE BASIC TOOLS

1.2.1 Saving, Loading, Reading, and Writing Files

Signals and variables which have been processed or created in the Scilab environment can be saved in files
written directly by Scilab. The syntax for tleave primitive is

-->save(file_name[,var_list])

wherefile _name is the file to be written to angar _list is the list of variables to be written. The
inverse to the operatiosave is accomplished by the primitiMead which has the syntax

-->load(file_name[,var_list])

where the argument list is identical that usegave .

Although the commandsave andload are convenient, one has much more control over the transfer
of data between files and Scilab by using the commaedd andwrite . These two commands work
similarly to the read and write commands found in Fortran. The syntax of these two commands is as follows.
The syntax fomwrite is

-->write(file,x[,form])

The second argument, is a matrix of values which are to be written to the file.
The syntax foread is

-->x=read(file,m,n[,form])

The argumentsnandn are the row and column dimensions of the resulting data matriandform is
again the format specification statement.

In order to illustrate the use of the on-line help for reading this manual we give the result of the Scilab
command

-->help read

read(1) Scilab Function read(1)

NAME
read - matrices read

CALLING SEQUENCE
[X]=read(file-name,m,n,[format])
[x]=read(file-name,m,n,k,format)

PARAMETERS

file-name : string or integer (logical unit number)

m, n . integers (dimensions of the matrix x). Set m=-1 if you dont
know the numbers of rows, so the whole file is read.

format . string (fortran format). If format='(a)’ then read reads a vec-
tor of strings n must be equal to 1.

1.2, SIGNALS S

k . integer

DESCRIPTION
reads row after row the mxn matrix x (n=1 for character chain) in the file
file-name (string or integer).

Two examples for format are : (1x,e10.3,5x,3(f3.0)),(10x,a20) (the default
value is *).

The type of the result will depend on the specified form. If form is
numeric (d,e,f,g) the matrix will be a scalar matrix and if form contains
the character a the matrix will be a matrix of character strings.

A direct access file can be used if using the parameter k which is is the
vector of record numbers to be read (one record per row), thus m must be
m=prod(size(k)).

To read on the keyboard use read(%io(1),...).

EXAMPLE
A=rand(3,5); write('foo’,A);
B=read(’foo’,3,5)
B=read('foo’,-1,5)
read(%io(1),1,1,'(a)’) /! waits for user's input

SEE ALSO
file, readb, write, %io, x_dialog

1.2.2 Simulation of Random Signals

The creation of synthetic signals can be accomplished using the Scilab funatidn which generates
random numbers. The user can generate a sequence of random numbers, a random matrix with the uniform
or the gaussian probability laws. A seed is possible to re-create the same pseudo-random sequences.

Often it is of interest in signal processing to generate normally distributed random variables with a
certain mean and covariance structure. This can be accomplished by using the standard normal random
numbers generated lwgnd and subsequently modifying them by performing certain linear numeric oper-
ations. For example, to obtain a random vegtawhich is distributed Nf2,,A,) from a random vectox
which is distributed standard normal (i.e. N(0,l)) one would perform the following operation

y =AYz +m, (1.1)

whereAé/ ? is the matrix square root af,. A matrix square root can be obtained using¢hel primitive
as follows

-->//[create normally distributed N(m,L) random vector y

-->m=[-2;1;10];

4 CHAPTERL DESGRIFPTION OF THE BASIC TOOLS

->L=[3 2 1;2 3 2.1 2 3];
-->L.2=chol(L);
-->rand('seed);
-->rand(’normal’);

-->x=rand(3,1)
X =

I - 0.7616491 !
! 1.4739762 !
! 0.8529775 !

-->y=[2"*xX+m
y =

I - 3.3192149 !
! 2.0234185 !
! 12.161519 !

taking note that it is the transpose of the matrix obtained fotrol that is used for the square root of

the desired covariance matrix. Sequences of random numbers following a specific normally distributed

probability law can also be obtained by filtering. That is, a white standard normal sequence of random

numbers is passed through a linear filter to obtain a normal sequence with a specific spectrum. For a filter
which has a discrete Fourier transfoifii(w) the resulting filtered sequence will have a spectgifw) =

|H (w)|?. More on filtering is discussed in Sectiars.

1.3 Polynomials and System Transfer Functions

Polynomials, matrix polynomials and transfer matrices are also defined and Scilab permits the definition
and manipulation of these objects in a natural, symbolic fashion. Polynomials are easily created and manip-
ulated. Thepoly primitive in Scilab can be used to specify the coefficients of a polynomial or the roots of
a polynomial.

A very useful companion to thgoly primitive is theroots primitive. The roots of a polynomiaj
are given by :

-->a=roots(q);

The following examples should clarify the use of @y androots primitives.

-->//illustrate the roots format of poly

> gl=poly([1 2],’x")
ql =

Lo, FOLYNOMIALS AND SYSIEM TRANSFER FUNCTIONS)

2
2 - 3X + X

--> roots(ql)
ans =

1. !
! 2.1
-->//illustrate the coefficients format of poly

--> g2=poly([1 2],’x’,'c")
g2 =

1+ 2x

> roots(q2)
ans =

- 05
-->/[illustrate the characteristic polynomial feature

> a=[l 23 4]
a =

! 2.1

! 3. 4. |

--> g3=poly(a,’x")
g3 =

-2 -5bx +x

--> roots(g3)
ans =

I - 0.3722813 !
! 5.3722813 !

Notice that the first polynomiadjl uses theroots’ default and, consequently, the polynomial takes
the form(s — 1)(s — 2) = 2 — 3s + s2. The second polynomiaj2 is defined by its coefficients given
by the elements of the vector. Finally, the third polynongjdl calculates the characteristic polynomial of
the matrixa which is by definition dgts/ — a). Here the calculation of theoots primitive yields the
eigenvalues of the matrix.
Scilab can manipulate polynomials in the same manner as other mathematical objects such as scalars,

8 CHAPTERL DESGRIFPTION OF THE BASIC TOOLS

vectors, and matrices. That is, polynomials can be added, subtracted, multiplied, and divided by other
polynomials. The following Scilab session illustrates operations between polynomials

-->//illustrate some operations on polynomials

--> x=poly(0,’x")

X
X
--> ql=3*x+1
a1 =
1+ 3x

> Q2=X*2-2*x+4

q2 =
2
4 - 2X + X
--> g2+ql
ans =
2
5+ x + X
--> g2-gq1
ans =
2
3 -5x + x
--> g2*ql
ans =
2 3

4 + 10x - 5x + 3x

-> g2/ql
ans =
2
4 - 2X + X
1+ 3x

Lo, FOLYNOMIALS AND SYSIEM TRANSFER FUNCTIONS !

Notice that in the above session we started by defining a basic polynomial elgnpehtch should not

be confused with the character string which represents the formal variable of the polynomial). An-
other point which is very important in what is to follow is that division of polynomials creates a rational
polynomial which is represented by a list (desdp list andhelp type in Scilab).

A rational is represented by a list containing four elements. The first element takes thérvalue
indicating that this list represents a rational polynomial. The second and third elements of the list are the
numerator and denominator polynomials, respectively, of the rational. The final element of the list is either
[or a character string (More on this subject is addressed later in this chapter (see $&cfonThe
following dialogue illustrates the elements of a list representing a rational polynomial.

-->//list elements for a rational polynomial

--> p=poly([1 2],’x)./poly([3 4 5],X’)
p =

- 60 + 47x - 12x + X

> p(1)
ans =

Ir num den dt !

—-> p(2)
ans =

2
2 - 33X + X

-> p(3)
ans =

2 3
- 60 + 47x - 12x + X

> p4)

te CHAPTERL DESGRIFPTION OF THE BASIC TOOLS

ans =

I

1.3.1 Evaluation of Polynomials

A very important operation on polynomials is their evaluation at specific points. For example, perhaps it is
desired to know the value the polynomigl+ 3z — 5 takes at the point = 17.2. Evaluation of polynomials
is accomplished using the primitifeeq . The syntax ofreq is as follows

-->pv=freq(num,den,v)

The argumenv is a vector of values at which the evaluation is needed.

For signal processing purposes, the evaluation of frequency response of filters and system transfer func-
tions is a common use dfeq . For example, a discrete filter can be evaluated on the unit circle in the
z-plane as follows

-->//[demonstrate evaluation of discrete filter
-->/lon the unit circle in the z-plane
--> h=[1:5,4:-1:1];
--> hz=poly(h,’z’,'c’);
> f=(0:.1:1);
--> hf=freq(hz,1,exp(%pi*%i*f));
--> hf’
25. !
6.3137515 - 19.431729i !
I - 8.472136 - 6.1553671i !
1.9626105 + 1.42592i !

|

|

|

|

| 1.110D-16 - 4.441D-16i !
I 1. - 7.499D-33i !
|

|

|

|

|

! 0.4721360 - 1.4530851i !

I - 0.5095254 - 0.3701919i !

I - 5.551D-17i !
0.1583844 + 0.4874572i !
1. + 4.899D-16i !

Here,h is an FIR filter of length 9 with a triangular impulse response. The transfer function of the filter
is obtained by forming a polynomial which represents thieansform of the filter. This is followed by

1.4. SIATESFACE REPREBENIATION d

evaluating the polynomial at the pointgp(27in) for n = 0,1,...,10 which amounts to evaluating the
z-transform on the unit circle at ten equally spaced points in the range of ddgtés
1.3.2 Representation of Transfer Functions

Signal processing makes use of rational polynomials to describe signal and system transfer functions. These
transfer functions can represent continuous time signals or systems or discrete time signals or systems.
Furthermore, discrete signals or systems can be related to continuous signals or systems by sampling.

The function which processes a rational polynomial so that it can be represented as a transfer function
is calledsyslin

-->g|=syslin(domain,num,den)
Another use for the functiosyslin for state-space descriptions of linear systems is described in the
following section.
1.4 State Space Representation
The classical state-space description of a continuous time linear system is :

t) = Az(t) + Bu(t)
y(t) = Cux(t) + Du(t)
z(0) = =z

whereA, B, C', andD are matrices andy is a vector and for a discrete time system takes the form

x(n+1) = Axz(n)+ Bu(n)
y(n) = Cuxz(n)+ Du(n)
z(0) = m

State-space descriptions of systems in Scilab useytslen function :
-->s|=syslin(domain,a,b,c [,d[,x0]])

The returned value dfl is a list wheres=list(’lss’,a,b,c,d,x0,domain) :

The value of having a symbolic object which represents a state-space description of a system is that
functions can be created which operate on the system. For example, one can combine two systems in
parallel or in cascade, transform them from state-space descriptions into transfer function descriptions and
vice versa, and obtain discretized versions of continuous time systems and vice versa. The topics and others
are discussed in the ensuing sections.

1.5 Changing System Representation

Sometimes linear systems are described by their transfer function and sometimes by their state equations. In
the event where it is desirable to change the representation of a linear system there exists two Scilab functions
which are available for this task. The first functidBss converts systems described by a transfer function
to a system described by state space representation. The second fgsetion works in the opposite
sense.

The syntax otf2ss is as follows

CHAPTERL DESGRIFPTION OF THE BASIC TOOLS

-->s|=tf2ss(h)

An important detail is that the transfer functibnmust be of minimum phase. That is, the denominator
polynomial must be of equal or higher order than that of the numerator polynomial.

-->h=ss2tf(sl)

The following example illustrates the use of these two functions.

-->//lllustrate use of ss2tf and tf2ss

-->h1=iir(3,1p’, butt’,[.3 0],[0 0])
h1 =

2 3
0.2569156 + 0.7707468z + 0.7707468z + 0.2569156z

2 3
0.0562972 + 0.4217870z + 0.5772405z + z

-->h1=syslin('d’,h1);
-->s1=tf2ss(h1)
sl =
sl(l) (state-space system:)
Iss A B C D X0 dt !
s1(2) = A matrix =
I 0.0223076 0.5013809 0. !
I - 0.3345665 - 0.3797154 - 0.4502218 !

! 0.1124639 0.4085596 - 0.2198328 !

s1(3) = B matrix

I - 2.3149238 !
I - 2.1451754 !
! 0.2047095 !

C matrix

sl(4)
I - 0.2688835 0. - 8.327D-17 !

s1(5) = D matrix =

0.2569156

1.6, INTERCONNECTING SYSIEMS

— 81 S92 o s1*s2
S1
o—rt s1+s2
52
S1
[s1,s2]
52
51
—t [s1;s2]
52

Figure 1.1: Block Diagrams of System Interconnections

(%]
=
~
()]
N—r

1

X0 (initial state) =

Time domain =

(%]
iy
—~
~
~

1

Here the transfer function of a discrete IIR filter is created using the fundtion(see Sectiont.2). The
fourth element oh1 is set using the functiogyslin and then usingf2ss the state-space representation
is obtained in list form.

1.6 Interconnecting systems

Linear systems created in the Scilab environment can be interconnected in cascade or in parallel. There
are four possible ways to interconnect systems illustrated in Figdreln the figure the symbols; and
so represent two linear systems which could be represented in Scilab by transfer function or state-space

CHAPTERL DESGRIFPTION OF THE BASIC TOOLS

representations. For each of the four block diagrams in Figjuréhe Scilab command which makes the
illustrated interconnection is shown to the left of the diagram in typewriter-face font format.
1.7 Discretizing Continuous Systems

A continuous-time linear system represented in Scilab by its state-space or transfer function description can
be converted into a discrete-time state-space or transfer function representation by using thedsoction
Consider for example an input-output mapping which is given in state space form as:

z(t) = Axz(t) + Bu(t)
O30 2 G s ouis (12)

From the variation of constants formula the value of the stétecan be calculated at any times
t
2(t) = e*(0) + / A9 By(0)do (1.3)
0

Let i be a time step and consider an inpuivhich is constant in intervals of length Then associated
with (1.2) is the following discrete time model obtained by using the variation of constants formul&jn (

z(n+1) = Apxz(n)+ Bru(n)
O "o 2 Gt s date 4
where
Aj, = exp(Ah)
By, = /h A=) Bdq

0

Ch=0C
D, =D

Since the computation of a matrix exponent can be calculated using the Scilab priexitivet is
straightforward to implement these formulas, although the numerical calculations needed to comdite
are rather involved 0]).

If we take 1B
= o)
where the dimensions of the zero matrices are chosen s&'tissdquare then we obtain

exp(Gh) = [%h BIh]

When A is nonsingular we also have that
B, = A Y(A;, — I)B.

This is exactly what the functiodscr does to discretize a continuous-time linear system in state-space
form.

The functiondscr can operate on system matrices, linear system descriptions in state-space form, and
linear system descriptions in transfer function form. The syntax using system matrices is as follows

-->[f,g[,r]]=dscr(syslin(’c’,a,b,[],[]),dt [,m])

L7. DISURKETIZING CONTINUOUS SYosSleEMs

wherea andb are the two matrices associated to the continuous-time state-space description
#(t) = Ax(t) + Bu(t) (1.5)
andf andg are the resulting matrices for a discrete time system
x(n+1) = Fz(n) + Gu(n) (1.6)

where the sampling period @t . In the case where the fourth argumenis given, the continuous time
system is assumed to have a stochastic input so that now the continuous-time equation is

#(t) = Azx(t) + Bu(t) + w(t) (1.7)

wherew(t) is a white, zero-mean, Gaussian random process of covaniaacd now the resulting discrete-
time equation is
z(n+1) = Fz(n) + Gu(n) + q(n) (1.8)

whereg(n) is a white, zero-mean, Gaussian random sequence of covariance
Thedscr function syntax when the argument is a linear system in state-space form is

-->[sld[,r]]=dscr(sl,dt[,m])

wheresl andsld are lists representing continuous and discrete linear systems representations, respectively.
Heremandr are the same as for the first function syntax. In the case where the function argument is a linear
system in transfer function form the syntax takes the form

-->[hd]=dscr(h,dt)

where nowh andhd are transfer function descriptions of the continuous and discrete systems, respectively.
The transfer function syntax does not allow the representation of a stochastic system.
As an example of the use dbcr consider the following Scilab session.

-->//Demonstrate the dscr function

> a=[2 1,0 2]

a =
! 2. 1.!
! 0. 2.1
> b1
b =
! 1.!
! 1.!

--> [sld]=dscr(syslin(’c’,a,b,eye(2,2)),.1);

> sld(2)
ans =

CHAPTERL DESGRIFPTION OF THE BASIC TOOLS

! 1.2214028 0.1221403 !
! 0. 1.2214028 !

> sld@3)
ans =

! 0.1164208 !
! 0.1107014 !

1.8 Filtering of Signals

Filtering of signals by linear systems (or computing the time response of a system) is done by the function
flts which has two formats . The first format calculates the filter output by recursion and the second
format calculates the filter output by transform. The function syntaxes are as follows. The syfitax of

is

-->[y[,x]]=flts(u,sI[,x0])

for the case of a linear system represented by its state-space description (seelS@diwth
-->y=flts(u,h[,past])

for a linear system represented by its transfer function.
In general the second format is much faster than the first format. However, the first format also yields
the evolution of the state. An example of the usditsf using the second format is illustrated below.

-->/[filtering of signals

-->//[make signal and filter

-->[h,hm, fr]=wfir(’'lp’,33,[.2 0],’hm’,[0 0]);
-->t=1:200;

-->x1=sin(2*%pi*t/20);
-->Xx2=sin(2*%pi*t/3);

-->X=xX1+X2;

-->z=poly(0,’2");
-->hz=syslin('d’,poly(h,’z’,'c")./z**33);
-->yhz=flts(x,hz);

-->plot(yhz);

1.9. PLOI'TING SIGNALS

Notice that in the above example that a signal consisting of the sum of two sinusoids of different frequencies
is filtered by a low-pass filter. The cut-off frequency of the filter is such that after filtering only one of the
two sinusoids remains. Figutk?2 illustrates the original sum of sinusoids and Figar8 illustrates the
filtered signal.

21

17 +
13 +
09 +

05 4

0.1+

-0.7 —

11

-15 +

29—

Figure 1.2:exec('flts1.code’) Sum of Two Sinusoids

1.9 Plotting Signals

Here we describe some of the features of the simplest plotting command. A more complete description of
the graphics features are given in the on-line help.

Here we present several examples to illustrate how to construct some types of plots.

To illustrate how an impulse response of an FIR filter could be plotted we present the following Scilab
session.

-->//lllustrate plot of FIR filter impulse response
-->[h,hm,fr]=wfir(bp’,55,[.20.25],’hm’,[0 0]);

—>plot(h)

Here a band-pass filter with cut-off frequencies of .2 and .25 is constructed using a Hamming window. The
filter length is 55. More on how to make FIR filters can be found in Chéapter

The resulting plot is shown in Figure4.

The frequency response of signals and systems requires evaluatiggrémsform on thejw-axis or
the z-transform on the unit circle. An example of evaluating the magnitude of the frequency response of a
continuous-time system is as follows.

CHAPTERL DESGRIFPTION OF THE BASIC TOOLS

13

09 4

05 o

01+

-03 —

07 -

¥ ¥ 77—

Figure 1.3:exec('flts2.code’) Filtered Signal

0.08 o
0.06 o
0.04 4

0.02 o

-0.02 —
-0.04
-0.06

-0.08 —

-0.10 . ; . ; . ; . ; . ;

Figure 1.4:exec(’plotl.code’) Plot of Filter Impulse Response

1.9. PLOI'TING SIGNALS

-->//[Evaluate magnitude response of continuous-time system

-->hs=analpf(4,’ chebl’,[.1 0],5)
hs =

161.30794

2 3 4
179.23104 + 96.905252s + 37.094238s + 4.9181782s + s

-->fr=0:.1:15;
-->hf=freq(hs(2),hs(3),%i*fr);
-->hm=abs(hf);

-->plot(fr,hm),

Here we make an analog low-pass filter using the functeorapf (see Chaptes for more details). The
filter is a type | Chebyshev of order 4 where the cut-off frequency is 5 Hertz. The prirfiige (see
Sectionl.3.]) evaluates the transfer functidis at the values ofr on thejw-axis. The result is shown in
Figurel.5

10
0.9 —
0.8 4
0.7 4
0.6 o
05 o
0.4 ;
0.3 ;
0.2 ;

01—

Figure 1.5:exec(’'plot2.code’) Plot of Continuous Filter Magnitude Response

A similar type of procedure can be effected to plot the magnitude response of discrete filters where the
evaluation of the transfer function is done on the unit circle inztgane by using the functiofimag .

-->[xm,fr]=frmag(num[,den],npts)

CHAPTERL DESGRIFPTION OF THE BASIC TOOLS

The returned arguments axm, the magnitude response at the valuefs inwhich contains the normal-
ized discrete frequency values in the raf@.5].

-->//[demonstrate Scilab function frmag
-->hn=eqfir(33,[0,.2;.25,.35;.4,.5],[0 1 0],[1 1 1]);
-->[hm,fr]=frmag(hn,256);

-->plot(fr,hm),

Here an FIR band-pass filter is created using the fund@afir (see ChapteBs).

12

10 H

0.8 4

06 o

04 o

02

Figure 1.6:exec(’plot3.code’) Plot of Discrete Filter Magnitude Response

Other specific plotting functions af®de for the Bode plot of rational system transfer functions (see
Section2.1.1), group for the group delay (see Secti@nl.2 andplzr for the poles-zeros plot.

-->//Demonstrate function plzr

-->hz=iir(4,’lp’,’butt’,[.25 0],[0 0])
hz =

2 3 4
0.0939809 + 0.3759234z + 0.5638851z + 0.3759234z + 0.0939809z

2 3 4
0.0176648 + 1.928D-17z + 0.4860288z + 4.317D-17z + z

110 DeEVELOPMENT OF SIGNAL PROCESING TOOLS

-->plzr(hz)

Here a fourth order, low-pass, IR filter is created using the fundtion (see Sectiort.2). The resulting
pole-zero plot is illustrated in Figure7

transmission zeros and poles
imag. axis

1.100
0.880 ;
0.659 ;
0.439 ;
0.218 ;
-0.002 ;
-0.223 ;
oms |
-0.664 ;

0884 real axis

-1.104 -—¥—— 77—
1562 -1250 0938 -0626 0314 -0002 0310 0622 0934 1246 1558
® Potes

Figure 1.7:exec(’plot4.code’) Plot of Poles and Zeros of IIR Filter

1.10 Development of Signal Processing Tools

Of course any user can write its own functions like those illustrated in the previous sections. The simplest
way is to write a file with a special format . This file is executed with two Scilab primityeté andexec .

The complete description of such functionalities is given in the reference manual and the on-line help. These
functionalities correspond to the buttéile Operations

CHAPTERL DESGRIFPTION OF THE BASIC TOOLS

Chapter 2

Time and Frequency Representation of
Signals

2.1 Frequency Response

2.1.1 Bode Plots

The Bode plot is used to plot the phase and log-magnitude response of functions of a single complex variable.
The log-scale characteristics of the Bode plot permitted a rapid, “back-of-the-envelope” calculation of a
system’s magnitude and phase response. In the following discussion of Bode plots we consider only real,
causal systems. Consequently, any poles and zeros of the system occur in complex conjugate pairs (or are
strictly real) and the poles are all located in the left-lzafflane.

For H (s) a transfer function of the complex variablgthe log-magnitude off (s) is defined by

M (w) = 201logyg [H () s=juw| (2.1)
and the phase df/ (s) is defi